| 注册
首页|期刊导航|传感技术学报|基于LSTM的固冲发动机双冗余压强传感器故障诊断研究

基于LSTM的固冲发动机双冗余压强传感器故障诊断研究

邹易君 曾庆华 肖云雷 张宗宇 王宏福 叶宵宇 王欢

传感技术学报2025,Vol.38Issue(4):579-587,9.
传感技术学报2025,Vol.38Issue(4):579-587,9.DOI:10.3969/j.issn.1004-1699.2025.04.002

基于LSTM的固冲发动机双冗余压强传感器故障诊断研究

Research on Fault Diagnosis of Dual-Redundant Pressure Sensors of Solid Fuel Ramjet Based on LSTM

邹易君 1曾庆华 1肖云雷 2张宗宇 1王宏福 1叶宵宇 1王欢1

作者信息

  • 1. 中山大学航空航天学院,广东 深圳 518107
  • 2. 北京流体动力科学研究中心,北京 100011
  • 折叠

摘要

Abstract

The pressure in the gas generator is an important feedback variable for the thrust control loop of solid fuel ramjet,and its pre-cise measurement is crucial for ensuring the safety of the engine.In response to the limited reference data and difficulty in fault localiza-tion of dual-redundant pressure sensors,a fault diagnosis method based on long short-term memory(LSTM)and state observer is pro-posed.Firstly,the working principle of the gas generator is introduced and a fault model for the pressure sensor is established.Then,to increase redundancy,the state observer is used to obtain the pressure estimate and construct the system's nominal pressure reference sig-nal.Subsequently,fault labels are set,and corresponding faults are injected into the two sensor models to collect time-series data for each label.Detection and classification of sensor faults are achieved via LSTM.Simulation results indicate that the proposed method can effectively identify the faults of both single-sensor and dual-sensors,with an average accuracy of mathematical simulation over 95%and an average accuracy of hardware in-loop over 90%simulation.It also has good generalization ability.

关键词

压强传感器/故障诊断/长短时记忆/双冗余/固体冲压发动机:状态观测器

Key words

pressure sensor/fault diagnosis/long short-term memory/dual redundancy/solid fuel ramjet/state observer

分类

信息技术与安全科学

引用本文复制引用

邹易君,曾庆华,肖云雷,张宗宇,王宏福,叶宵宇,王欢..基于LSTM的固冲发动机双冗余压强传感器故障诊断研究[J].传感技术学报,2025,38(4):579-587,9.

基金项目

国家自然科学基金项目(61174120) (61174120)

传感技术学报

OA北大核心

1004-1699

访问量0
|
下载量0
段落导航相关论文