| 注册
首页|期刊导航|电测与仪表|基于VMD和PSO-SVM的非侵入式负荷识别方法

基于VMD和PSO-SVM的非侵入式负荷识别方法

杨锐 邹晓松 熊炜 袁旭峰 郑华俊 刘斌

电测与仪表2025,Vol.62Issue(5):111-119,9.
电测与仪表2025,Vol.62Issue(5):111-119,9.DOI:10.19753/j.issn1001-1390.2025.05.014

基于VMD和PSO-SVM的非侵入式负荷识别方法

Non-intrusive load identification method based on VMD and PSO-SVM

杨锐 1邹晓松 1熊炜 1袁旭峰 1郑华俊 1刘斌2

作者信息

  • 1. 贵州大学电气工程学院,贵阳 550025
  • 2. 贵州电网有限公司电力科学研究院,贵阳 550002
  • 折叠

摘要

Abstract

Non-intrusive load monitoring is one of the important technologies of intelligent power consumption,a-mong which load decomposition and identification is an important link to realize the technology.In view of the ad-vantage of variational mode decomposition(VMD)in signal processing,a load identification algorithm based on variational mode decomposition and fast independent component analysis(VMD-FastICA)and variational mode de-camposition-entropy-particle swanm optimization fo optimizing support vector machines(VMD-Entropy-PSOSVM)is proposed.The total load power signal is decomposed using VMD to obtain multiple intrinsic mode functions(IMF),and then,the IMF is reconstructed based on the cliff criterion and singular value decomposition to virtual-ize single-channel blind source separation into multi-channel blind source separation into fast independent compo-nent analysis(FastICA)for load signal separation.Then,the energy and energy entropy of the modal components of the decomposed load waveform are obtained,and the multi-dimensional feature matrix input is constructed to es-tablish a particle swarm optimization-support vector machine particle swarm optimization for optimizing support vec-tor machines(PSO-SVM)for classification and identification of the load.The experimental algorithm is simulated using the reduced electricity dataset(REDD),and it is verified that the algorithm has better results in both decom-position and recognition compared to other algorithms.

关键词

非侵入式负荷监测/单通道盲源分解/变分模态分解/能量熵/粒子群算法优化支持向量机

Key words

non-intrusive load monitoring/single-channel blind source decomposition/variational modal decompo-sition/energy entropy/particle swarm optimization-support vector machine

分类

动力与电气工程

引用本文复制引用

杨锐,邹晓松,熊炜,袁旭峰,郑华俊,刘斌..基于VMD和PSO-SVM的非侵入式负荷识别方法[J].电测与仪表,2025,62(5):111-119,9.

基金项目

国家自然科学基金资助项目(52067004) (52067004)

贵州省科学技术基金项目([2019]1058,[2019]1128) ([2019]1058,[2019]1128)

电测与仪表

OA北大核心

1001-1390

访问量0
|
下载量0
段落导航相关论文