| 注册
首页|期刊导航|电子学报|云边协同大模型块粒度重训方法

云边协同大模型块粒度重训方法

张青龙 韩锐 刘驰

电子学报2025,Vol.53Issue(2):287-300,14.
电子学报2025,Vol.53Issue(2):287-300,14.DOI:10.12263/DZXB.20240518

云边协同大模型块粒度重训方法

Cloud-Edge Collaborative Retraining of Foundation Models at the Block Granularity

张青龙 1韩锐 1刘驰1

作者信息

  • 1. 北京理工大学计算机学院,北京 100081
  • 折叠

摘要

Abstract

Foundation models deployed in dynamic edge environment encounter continuously evolving input data dis-tributions,requiring retraining them to maintain high accuracy.However,existing retraining techniques can only train fixed compressed models within the constraints of device resources and retraining windows,thus considerably lowering accura-cies due to these small models'limited generalization ability.For such an issue,this paper proposes BlockTrainer,an edge-cloud collaborative retraining approach of foundation models at the block granularity.BlockTrainer first introduces a model retraining scaling law to evaluate the accuracy contributions of different blocks in a foundation model according to its latest input data at edge.Based on this evaluation,it generates the optimal retraining solution under resource constraints,and dy-namically converts the most accuracy-relevant parts of the model into retrainable small models at edge,thereby constructing a collaborative training system between large and small models.Comparative experiments on real edge-cloud platforms show that BlockTrainer improves the retraining accuracy of foundation models by 81.24%using the same resource con-sumptions,and supports retraining a model of up to 33 billion parameters.

关键词

大模型/边缘侧动态环境/模型重训/缩放定律/云边大小模型协同训练

Key words

foundation model/dynamic environment at edge/model retraining/scaling law/edge-cloud collabora-tive retraining of large and small models

分类

计算机与自动化

引用本文复制引用

张青龙,韩锐,刘驰..云边协同大模型块粒度重训方法[J].电子学报,2025,53(2):287-300,14.

基金项目

国家重点研发计划(No.2023YFE0209100) (No.2023YFE0209100)

国家自然科学基金(No.62272046,No.62132019,No.61872337) National Key Research and Development Program of China(No.2023YFE0209100) (No.62272046,No.62132019,No.61872337)

National Natural Science Foundation of China(No.62272046,No.62132019,No.61872337) (No.62272046,No.62132019,No.61872337)

电子学报

OA北大核心

0372-2112

访问量0
|
下载量0
段落导航相关论文