| 注册
首页|期刊导航|电子学报|车联网边缘计算环境下基于流量预测的高效任务卸载策略研究

车联网边缘计算环境下基于流量预测的高效任务卸载策略研究

许小龙 杨威 杨辰翊 程勇 齐连永 项昊龙 窦万春

电子学报2025,Vol.53Issue(2):329-343,15.
电子学报2025,Vol.53Issue(2):329-343,15.DOI:10.12263/DZXB.20240609

车联网边缘计算环境下基于流量预测的高效任务卸载策略研究

Efficient Task Offloading Based on Traffic Prediction in IoV-Enabled Edge Computing

许小龙 1杨威 2杨辰翊 3程勇 2齐连永 4项昊龙 2窦万春5

作者信息

  • 1. 南京信息工程大学软件学院,江苏 南京 210044||江苏省大气环境与装备技术协同创新中心,江苏 南京 210044||江苏省先进计算与智能服务工程研究中心,江苏 南京 210044
  • 2. 南京信息工程大学软件学院,江苏 南京 210044
  • 3. 东南大学软件学院,江苏 南京 211189
  • 4. 中国石油大学(华东)计算机科学与技术学院,山东 青岛 266580
  • 5. 南京大学计算机软件新技术国家重点实验室,江苏 南京 210000
  • 折叠

摘要

Abstract

Vehicle edge computing combines mobile edge computing and the internet of vehicles(IoV)to offload the vehicle computing tasks from the cloud servers to edge servers,which effectively reduces the response time of IoV services.However,the irregular spatiotemporal distributions of traffic flows in vehicle networking will lead to the imbalance of com-puting load on the edge servers,which impacts real-time responsiveness of vehicle networking services.To address this is-sue,this paper proposes an efficient task offloading strategy based on traffic prediction in the vehicle edge computing.Spe-cifically,a chebyshev graph weighted network(ChebWN)is designed to forecast traffic flow by fully leveraging connectivi-ty and distance information between road segments.Next,a deep reinforcement learning-based binary task offloading algo-rithm(DBOA)is designed,which divides the binary task offloading decision process into two stages.Initially,a deep rein-forcement learning approach is employed to derive the offloading strategies.Subsequently,a one-dimensional bi-end search algorithm is utilized to determine the time slot allocation scheme that maximizes the overall computation rate,thereby reduc-ing the complexity of the decision-making process.Finally,a large number of comparative experiments demonstrate the accu-racy of ChebWN in predicting traffic flow and the superiority of DBOA in improving the response speed of vehicle services.

关键词

移动边缘计算/深度强化学习/车联网/图神经网络(GNN)/任务卸载

Key words

mobile edge computing/deep reinforcement learning/internet of vehicles/graph neural network/task offloading

分类

电子信息工程

引用本文复制引用

许小龙,杨威,杨辰翊,程勇,齐连永,项昊龙,窦万春..车联网边缘计算环境下基于流量预测的高效任务卸载策略研究[J].电子学报,2025,53(2):329-343,15.

基金项目

国家自然科学基金(No.62372242,No.92267104) National Natural Science Foundation of China(No.62372242,No.92267104) (No.62372242,No.92267104)

电子学报

OA北大核心

0372-2112

访问量1
|
下载量0
段落导航相关论文