首页|期刊导航|电力信息与通信技术|基于大模型的大规模电力数据零样本实体关系抽取方法

基于大模型的大规模电力数据零样本实体关系抽取方法OA

Zero-shot Entity Relationship Extraction From Massive Electric Power Data With Large Language Model

中文摘要英文摘要

在大数据时代,大规模电力数据的实体关系三元组抽取对于电力数据的智能分析与处理具有十分重要的意义.传统的深度学习方法需要大量标注电力领域训练数据,用于深度学习模型学习,这种方法不仅耗时耗力,而且难以取得好的实体关系抽取效果.针对这些问题,文章提出了一种基于大语言模型的电力领域零样本聊天生成式实体关系抽取(chat relation exaction,ChatRE).ChatRE提出两阶段多轮对话方法,将实体关系抽取分成2个子任务,并使用句法增强进一步提升抽取的效果,有效地解决大规模电力数据零样本实体关系抽取问题.基于构建的电力领域实体数据集以及通用数据集对ChatRE进行实验评估.结果表明,所提ChatRE模型优于现有的方法,可以从复杂的电力领域知识中有效抽取实体关系三元组.

In the era of big data,the extraction of entity relations triples from data in the electric power field is of great signifi-cance to the structuring of electric power data.However,traditional deep learning methods require a large amount of labeled training data in the power field for deep learning model learning.This method is undoubtedly time-consuming and labor-intensive,and cannot achieve good entity relations extraction results.In response to these problems,this pa-per proposes a zero-shot entity relations extraction method in the electric power field called chat relation exaction(ChatRE)based on a large language model.The two-stage multi-round dialogue method proposed by ChatRE divides the entity relations extrac-tion into two sub-tasks and uses syntactic enhancement.This further improves the extraction effect and effectively solves the above problems.This paper conducts an experimental evaluation of ChatRE based on the constructed elec-tric power field entity data set and general data set.The results show that the ChatRE model proposed in this paper is better than existing methods and can effectively extract entity relations triples from complex power domain knowledge.

胡新雨;宋博川;仝杰;李云鹏;毛艳芳;吕晓祥;张强;孙大军;陈群丰

国网南通供电公司,江苏省 南通市 226000中国电力科学研究院有限公司,北京市 昌平区 102200中国电力科学研究院有限公司,北京市 昌平区 102200国网南通供电公司,江苏省 南通市 226000国网南通供电公司,江苏省 南通市 226000国网南通供电公司,江苏省 南通市 226000中国电力科学研究院有限公司,北京市 昌平区 102200苏州华天国科电力科技有限公司,江苏省 苏州市 215000苏州华天国科电力科技有限公司,江苏省 苏州市 215000

电子信息工程

电力数据大语言模型零样本学习实体关系抽取多轮对话句法分析

electric power datalarge language modelzero-shot learningentity relations extractionmulti-turn dialoguesyntactic analysis

《电力信息与通信技术》 2025 (5)

61-67,7

国家电网有限公司总部科技项目"电网主设备运维多模态生成式模型构建与应用关键技术研究"(5700-202318598A-3-2-ZN).

10.16543/j.2095-641x.electric.power.ict.2025.05.08

评论