使用交叉注意力融合项目类别属性的序列推荐模型OA
Sequence recommendation model with cross-attention fusion of item category attributes
用户交互序列中兴趣偏好的变化可以通过序列中项目属性的变化体现.为进一步提升推荐系统的准确度,可以通过合理的方法在序列推荐算法中融合项目属性,达到更精确的捕捉用户兴趣偏好的效果.以往的方法在注意力层之前使用多层感知机融合属性信息,项目属性间的异构性和项目信息与属性信息间的相关性都给注意力计算带来额外干扰.使用多层感知机额外带来的参数量,也增加了训练过程的负担.因此,选择体现兴趣偏好变化最直观的项目类别作为属性,通过解耦属性表示和项目表示将类别兴趣抽取和项目预测分开建模.使用自注意力稀疏化方法降低序列中噪声项目的影响,抽取更精确的类别兴趣.根据抽取的类别兴趣,应用多头交叉注意力方法聚合序列中的项目,可避免将不同兴趣中心的项目聚合在一起.在Beauty、Sports、Toys等真实数据集上进行对比和消融实验,实验结果表明,所提模型的性能比基线模型和同类模型均有较大提升.
The changes in user preference in the interaction sequence can be reflected by the changes in item attributes in the se-quence.To further improve the accuracy of recommendation systems,item attributes can be integrated into sequence recommenda-tion algorithms in a reasonable way to achieve a more precise capturing of user interests.Previous methods used multi-layer percep-tron to fuse attribute information before the attention layer,which brought additional interference to the attention calculation due to the heterogeneity of item attributes and the correlation between item information and attribute information.The additional parame-ters brought by the multi-layer perceptron also increased the burden of the training process.This paper proposes selecting the project category that most intuitively reflects the changes in interest preferences as the attribute,separating the category interest extraction from the project prediction by decoupling the attribute representation from the project representation.The self-attention sparsifica-tion method is used to reduce the influence of noisy items in the sequence and extract more accurate category interests.Based on the extracted category interests,a multi-head cross-attention method is applied to aggregate the items in the sequence,avoiding the ag-gregation of items from different interest centers.Comparative and ablation experiments were conducted on real datasets such as Beauty,Sports,and Toys,and the results showed that the proposed model has better performance than baseline models and similar models.
姜浩;蔡国永;湛永松;陈金龙
桂林电子科技大学 计算机与信息安全学院,广西 桂林 541004桂林电子科技大学 计算机与信息安全学院,广西 桂林 541004桂林电子科技大学 计算机与信息安全学院,广西 桂林 541004桂林电子科技大学 计算机与信息安全学院,广西 桂林 541004
计算机与自动化
推荐算法序列推荐属性信息多头交叉注意力方法稀疏自注意力方法
recommendation algorithmsequence recommendationattribute informationmulti-head cross-attention methodsparse self-attention method
《桂林电子科技大学学报》 2025 (1)
11-19,9
广西科技重大专项(桂科AA19046004)
评论