首页|期刊导航|桂林电子科技大学学报|融合自注意力机制的YOLOv5交通标志检测算法

融合自注意力机制的YOLOv5交通标志检测算法OA

A YOLOv5 traffic sign detection algorithm of fusion self-attention mechanism

中文摘要英文摘要

针对YOLOv5 网络模型在复杂环境下对交通标志检测提取全局特征信息不足、特征融合不充分和检测效率低的问题,提出一种融合自注意力机制的YOLOv5 交通标志检测算法.该算法在主干网络特征提取部分将基于自注意力机制的Swin-Transformer模块与可降低模型计算量的C3 模块融合来增加特征图像之间的信息交互,以获取多尺度图像特征.模型的特征图像处理部分利用视觉Transformer模型,并结合Swin-Transformer模块进行特征图像的融合,得到待测图像的全局特征信息,提高了模型的检测精度.最后,将原有特征图像拼接方式进行赋权处理,重要交通标志特征信息可以优先检测,提高了模型的检测效率.在TT100K数据集进行测试后,最终平均检测精度均值达 83.51%,相对于原始YOLOv5 网络模型提高了 2.50 个百分点,单张特征图像检测速率提高了 0.037 s.实验结果表明,融合自注意力机制的YOLOv5 模型有效提高了对交通标志检测的全局特征提取能力、检测准确率与检测效率.

Aiming at the problems of insufficient global feature information,insufficient feature fusion and low detection efficiency of YOLOv5 network model in complex environment.A kind of YOLOv5 traffic sign detection algorithm incorporating self-atten-tion mechanism was proposed.In the backbone network feature extraction part,the Swin-Transformer module based on the self-at-tention mechanism and the C3 module which can reduce the calculation amount of the model to increase the information interaction between the feature images to obtain multi-scale image features.The feature image processing part of the model uses the visual Transformer model and the Swin-Transformer module to fuse the feature images,obtains the global feature information of the im-age to be measured,and improves the detection accuracy of the model.Finally,the original feature image splicing mode is weighted for processing,and the important traffic sign feature information can be preferentially detected,which improves the detection effi-ciency of the model.After testing in the TT100K datasets,the final mean average detection accuracy reached 83.51%,which was 2.50 percentage points higher than the original YOLOv5 network model and 0.037s higher compared to the original single feature image detection rate.The experimental results show that the YOLOv5 model integrating the self-attention mechanism effectively im-proves the global feature extraction ability,detection accuracy and detection efficiency of traffic sign detection.

那万达;张向利

桂林电子科技大学广西无线带通信与信号处理重点实验室,广西 桂林 541004桂林电子科技大学广西无线带通信与信号处理重点实验室,广西 桂林 541004

计算机与自动化

交通标志检测自注意力机制特征融合YOLOv5Swin-Transformer

traffic sign detectionself attention mechanismfeature fusionYOLOv5Swin-Transformer

《桂林电子科技大学学报》 2025 (1)

41-48,8

广西无线宽带通信与信号处理重点实验室主任基金(GXKL06200104)广西云计算与大数据协同创新中心(YD1904)

10.16725/j.1673-808X.202315

评论