基于YOLOv5和视频防抖的船只检测系统OA
Vessel inspection system based on YOLOv5 and video stabilization
为有效解决传统海面检测方案存在的部署不灵活、检测准确率不足、实时性较差等问题,设计并实现一种基于YOLOv5 和视频防抖的船只检测系统.系统由前端用户操作模块、后端服务模块和海上目标检测模块构成,并通过Jetson AGX硬件平台进行部署.系统经过详细的设计与实现,并在融合了YOLOv5 目标检测算法和数字视频防抖算法后,能实现利用边缘式的无人船载设备对海上目标进行准确识别、远程监控以及远程控制等功能.通过实验证明,系统具有良好的船只识别性能,并且在对捕获视频进行防抖优化后,能够较为明显地提高风浪情况下的识别准确率.同时,根据现场实际测试结果表明,系统提供的集成化操作平台为使用者提供了集中的控制与管理功能,且系统能够达到 45 frame/s的视频帧率和小于 2 s的播放时延,能够满足实时性的需求.
A ship detection system based on YOLOv5 and video stabilization is designed and implemented to effectively solve the problems of inflexible deployment,insufficient detection accuracy,and poor real-time performance in traditional sea surface detec-tion solutions.The system consists of a front-end user operation module,a back-end service module,and a sea target detection mod-ule,and is deployed on the Jetson AGX hardware platform.The system is designed and implemented in detail,and after integrating the YOLOv5 object detection algorithm and digital video stabilization algorithm,it can accurately identify and remotely monitor sea targets using edge-based unmanned ship-mounted devices,and provide remote control functions.Through experiments,the system has good ship recognition performance,and after optimizing the captured video with stabilization,the recognition accuracy under windy and wavy conditions can be significantly improved.At the same time,according to on-site actual test results,the system pro-vides users with centralized control and management functions through an integrated operation platform,and can achieve a video frame rate of 45 frame/s and a playback delay of less than 2 s,meeting real-time requirements.
蔡颂;刘庆华;叶金才
桂林电子科技大学信息与通信学院,广西 桂林 541004桂林电子科技大学信息与通信学院,广西 桂林 541004桂林电子科技大学信息与通信学院,广西 桂林 541004
计算机与自动化
船只检测远程控制硬件部署设计与实现神经网络视频防抖
vessel inspectionremote controlhardware deploymentdesign and implementationneural networksvideo stabiliza-tion
《桂林电子科技大学学报》 2025 (1)
54-61,8
广西创新驱动发展专项(桂科AA21077008)桂林市重点研发计划(2020010305)
评论