| 注册
首页|期刊导航|测试技术学报|基于改进模态分解混合模型的锂电池剩余容量预测

基于改进模态分解混合模型的锂电池剩余容量预测

宁弘扬 惠周利 冯娜娜 杨明

测试技术学报2025,Vol.39Issue(3):313-321,329,10.
测试技术学报2025,Vol.39Issue(3):313-321,329,10.DOI:10.62756/csjs.1671-7449.2025039

基于改进模态分解混合模型的锂电池剩余容量预测

Hybrid Model for Lithium-Ion Battery Remaining Capacity Prediction Based on Improved Variational Mode Decomposition

宁弘扬 1惠周利 1冯娜娜 1杨明1

作者信息

  • 1. 中北大学 数学学院,山西 太原 030051
  • 折叠

摘要

Abstract

With the widespread application of lithium-ion batteries in daily life,the development of effi-cient and accurate battery state-of-charge prediction technologies is of great significance for enhancing user experience and ensuring stable device operation.An efficient hybrid prediction model that utilizes the spar-row bird optimization algorithm(SBOA)to optimize variational mode decomposition(VMD)in combina-tion with Gaussian process regression(GPR)and gated recurrent units(GRU)is proposed.High-precision predictions of lithium-ion battery state-of-charge are achieved by this model.Comparisons with traditional GRU and VMD-GRU models reveal that the proposed model can swiftly and effectively cap-ture battery degradation trends.The mean absolute error(MAE)and root mean square error(RMSE)of the proposed method are 0.19%and 0.31%,respectively,demonstrating higher prediction accuracy and generalization capability.

关键词

蛇鹭优化算法/变分模态分解/高斯过程回归/门控循环单元/剩余容量预测

Key words

secretary bird optimization algorithm(SBOA)/variational mode decomposition/Gaussian process regression/gated recurrent unit/remaining capacity prediction

分类

动力与电气工程

引用本文复制引用

宁弘扬,惠周利,冯娜娜,杨明..基于改进模态分解混合模型的锂电池剩余容量预测[J].测试技术学报,2025,39(3):313-321,329,10.

基金项目

国家自然科学基金资助项目(12272356) (12272356)

山西省基础研究计划资助项目(202203021211088) (202203021211088)

测试技术学报

1671-7449

访问量0
|
下载量0
段落导航相关论文