| 注册
首页|期刊导航|河南农业科学|黄瓜病害智能识别技术研究进展

黄瓜病害智能识别技术研究进展

杨振东 马中杰 冯晓 杨凡 骆巍 罗晨 姜鸿勋 张英 宋淑敏 史一鸣 于艳玲 杨田亮

河南农业科学2025,Vol.54Issue(4):1-10,10.
河南农业科学2025,Vol.54Issue(4):1-10,10.DOI:10.15933/j.cnki.1004-3268.2025.04.001

黄瓜病害智能识别技术研究进展

Research Progress on Intelligent Identification Technology of Cucumber Diseases

杨振东 1马中杰 1冯晓 1杨凡 2骆巍 1罗晨 1姜鸿勋 2张英 2宋淑敏 1史一鸣 1于艳玲 3杨田亮4

作者信息

  • 1. 河南省农业科学院 农业信息技术研究所/农业农村部黄淮海智慧农业技术重点实验室,河南 郑州 450002
  • 2. 河南省农业科学院 蔬菜研究所,河南 郑州 450002
  • 3. 哈尔滨工业大学 郑州研究院,河南 郑州 450000
  • 4. 河南省田金生物科技有限公司,河南 郑州 450011
  • 折叠

摘要

Abstract

The timely and accurate identification of cucumber diseases using intelligent identification technology is crucial for the proactive control and rational application of pesticides,which is of great significance for ensuring high-quality cucumber production and ecological environmental safety.The intelligent identification of cucumber diseases is mainly realized by expert knowledge based on traditional expert systems and knowledge graphs,visible light image processing based on traditional machine learning and deep learning,spectral analysis such as chlorophyll fluorescence and hyperspectrum,and multi-modal data fusion.The research progress of intelligent identification of cucumber diseases based on the above technologies was reviewed,the existing problems and deficiencies in current research were also summarized,and the development trends of cucumber diseases intelligent identification technology in the future was prospected,in order to provide reference for the application research of cucumber diseases intelligent identification.

关键词

黄瓜病害/计算机视觉/多模态数据融合/专家知识/智能识别/大模型

Key words

Cucumber diseases/Computer vision/Multi-modal data fusion/Expert knowledge/Intelligent identification/Large model

分类

农业科技

引用本文复制引用

杨振东,马中杰,冯晓,杨凡,骆巍,罗晨,姜鸿勋,张英,宋淑敏,史一鸣,于艳玲,杨田亮..黄瓜病害智能识别技术研究进展[J].河南农业科学,2025,54(4):1-10,10.

基金项目

国家特色蔬菜产业技术体系项目(CARS-24-G-13) (CARS-24-G-13)

河南省科技攻关计划项目(252102110369) (252102110369)

河南省农业科学院创新团队专项(2024TD43) (2024TD43)

河南省农业科学院自主创新项目(2024ZC035) (2024ZC035)

河南农业科学

OA北大核心

1004-3268

访问量0
|
下载量0
段落导航相关论文