| 注册
首页|期刊导航|华侨大学学报(自然科学版)|改进YOLOv8n模型的火灾场景火焰检测方法

改进YOLOv8n模型的火灾场景火焰检测方法

乐其河 陈炜 郑祥盘 许亦镜 林立霖

华侨大学学报(自然科学版)2025,Vol.46Issue(3):255-263,9.
华侨大学学报(自然科学版)2025,Vol.46Issue(3):255-263,9.DOI:10.11830/ISSN.1000-5013.202412006

改进YOLOv8n模型的火灾场景火焰检测方法

Flame Detection Method in Fire Scene With Improved YOLOv8n Model

乐其河 1陈炜 2郑祥盘 2许亦镜 2林立霖2

作者信息

  • 1. 闽江学院物理与电子信息工程学院,福建 福州 350108||华侨大学机电及自动化学院,福建厦门 361021
  • 2. 闽江学院物理与电子信息工程学院,福建 福州 350108
  • 折叠

摘要

Abstract

Aiming at the problem of low accuracy in flame detection caused by complex smoke and dust envi-ronments in fire scenes,an efficient and precise flame detection method based on the YOLOv8n model was pro-posed.First,a variety of fire scene images were selected as the original images for the dataset,and random noise,such as salt and pepper noise,was added to simulate a smoke and dust environment.Second,a median filtering module was embedded at the front of the model's network framework to enhance the network's capa-bility to handle interference noise in smoke and dust environments.Finally,by utilizing Ghost convolution modules and designing cross layer connection networks at different lay levels,the number of parameters was re-duced while the generalization capability of the network was optimized.This enable real-time and high-preci-sion flame detection in fire scene with noise interference.Experimental results show that the improved YOLOv8n model had superior real-time performance and detection accuracy performance.

关键词

火焰检测/椒盐噪声/YOLOv8n模型/中值滤波模块/轻量级Ghost卷积

Key words

flame detection/random noise/YOLOv8n model/median filtering module/lightweight Ghost convolution

分类

计算机与自动化

引用本文复制引用

乐其河,陈炜,郑祥盘,许亦镜,林立霖..改进YOLOv8n模型的火灾场景火焰检测方法[J].华侨大学学报(自然科学版),2025,46(3):255-263,9.

基金项目

福建省自然科学基金资助项目(2022J05235) (2022J05235)

福建省技术创新重点攻关及产业化项目(校企联合类)(2023XQ018) (校企联合类)

闽江学院"揭榜挂帅"项目(ZD202303) (ZD202303)

闽江学院预研项目(MJY22022) (MJY22022)

华侨大学学报(自然科学版)

1000-5013

访问量1
|
下载量0
段落导航相关论文