| 注册
首页|期刊导航|计算机工程与应用|基于图神经网络的知识推理方法研究综述

基于图神经网络的知识推理方法研究综述

刘雪洋 李卫军 刘世侠 丁建平 苏易礌

计算机工程与应用2025,Vol.61Issue(10):50-65,16.
计算机工程与应用2025,Vol.61Issue(10):50-65,16.DOI:10.3778/j.issn.1002-8331.2408-0350

基于图神经网络的知识推理方法研究综述

Review of Knowledge Reasoning Methods Based on Graph Neural Networks

刘雪洋 1李卫军 2刘世侠 1丁建平 1苏易礌1

作者信息

  • 1. 北方民族大学 计算机科学与工程学院,银川 750021
  • 2. 北方民族大学 计算机科学与工程学院,银川 750021||北方民族大学 图形图像智能处理国家民委重点实验室,银川 750021
  • 折叠

摘要

Abstract

Knowledge reasoning is a fundamental task in knowledge graph completion.It has received widespread atten-tion from the academic community.With the development of knowledge reasoning technology,applying graph neural net-works to knowledge reasoning methods can fully consider the structural information of knowledge graphs,making them more interpretable and stronger in reasoning ability,which is currently one of the research hotspots.The basic concepts of knowledge graph and knowledge reasoning are described.Knowledge reasoning methods based on graph neural networks are categorized from the perspectives of closed-world and open-world settings.In the closed-world context,the emphasis is placed on two types of methods:graph convolutional networks and graph attention networks.In the open-world context,semi-inductive and fully-inductive methods are explored.The typical model frameworks of these methods are compared and analyzed,and their respective strengths and weaknesses are summarized.Finally,the applications of graph neural net-work reasoning in intelligent question answering,recommendation system and biomedicine are discussed,and the future research direction of graph neural network based knowledge reasoning is prospected.

关键词

知识图谱/图神经网络/知识推理/封闭世界/开放世界/归纳推理

Key words

knowledge graph/graph neural networks/knowledge reasoning/closed world/open world/inductive reasoning

分类

计算机与自动化

引用本文复制引用

刘雪洋,李卫军,刘世侠,丁建平,苏易礌..基于图神经网络的知识推理方法研究综述[J].计算机工程与应用,2025,61(10):50-65,16.

基金项目

国家自然科学基金(62066038,61962001) (62066038,61962001)

宁夏自然科学基金(2021AAC03215) (2021AAC03215)

中央高校科研项目(2022PT_S04,2021JCYJ12) (2022PT_S04,2021JCYJ12)

北方民族大学研究生创新项目(YCX24127). (YCX24127)

计算机工程与应用

OA北大核心

1002-8331

访问量4
|
下载量0
段落导航相关论文