| 注册
首页|期刊导航|计算机工程与应用|基于深度强化学习的视觉导航方法综述

基于深度强化学习的视觉导航方法综述

高宇宁 王安成 赵华凯 罗豪龙 杨子迪 李建胜

计算机工程与应用2025,Vol.61Issue(10):66-78,13.
计算机工程与应用2025,Vol.61Issue(10):66-78,13.DOI:10.3778/j.issn.1002-8331.2409-0215

基于深度强化学习的视觉导航方法综述

Review on Visual Navigation Methods Based on Deep Reinforcement Learning

高宇宁 1王安成 2赵华凯 3罗豪龙 1杨子迪 1李建胜1

作者信息

  • 1. 信息工程大学 地理空间信息学院,郑州 450001
  • 2. 信息工程大学 地理空间信息学院,郑州 450001||智慧中原地理信息技术河南省协同创新中心,郑州 450001||智慧地球重点实验室,北京 100029
  • 3. 信息工程大学 地理空间信息学院,郑州 450001||北京卫星导航中心,北京 100094
  • 折叠

摘要

Abstract

Traditional visual navigation methods are highly dependent on high-precision maps,and suffer from inevitable issues of error accumulation.These issues result in suboptimal performance when the traditional navigation methods are used in complex dynamic environments.Visual navigation methods based on deep reinforcement learning,by simulating human's innate navigation abilities,can achieve safe navigation to specified targets in an end-to-end manner by directly using visual information.This kind of methods has emerged as a promising research hotspot in the field of visual navi-gation.In order to explore the latest research issues in the direction of deep reinforcement learning navigation,and intui-tively analyze the latest methods,this paper introduces the background and theories of deep reinforcement learning.Then,it summarizes and analyzes crucial methods from three aspects:data utilization,policy optimization,and scene generaliza-tion,focusing on the major research issues in this direction over the past five years.Finally,this paper offers reflections on the current research status and future research directions of such methods,aiming to provide a reference for future investigations in related areas while summarizing the latest research trends.

关键词

视觉导航/深度强化学习/样本效率/泛化/计算机视觉

Key words

visual navigation/deep reinforcement learning/sample efficiency/generalization/computer vision

分类

天文与地球科学

引用本文复制引用

高宇宁,王安成,赵华凯,罗豪龙,杨子迪,李建胜..基于深度强化学习的视觉导航方法综述[J].计算机工程与应用,2025,61(10):66-78,13.

基金项目

智慧中原地理信息技术河南省协同创新中心和时空感知与智能处理自然资源部重点实验室基金(232104). (232104)

计算机工程与应用

OA北大核心

1002-8331

访问量12
|
下载量0
段落导航相关论文