| 注册
首页|期刊导航|计算机工程与应用|融合多视图特征的放射学报告生成

融合多视图特征的放射学报告生成

欧佳乐 昝红英 张坤丽 师相龙 马玉团

计算机工程与应用2025,Vol.61Issue(10):320-330,11.
计算机工程与应用2025,Vol.61Issue(10):320-330,11.DOI:10.3778/j.issn.1002-8331.2402-0218

融合多视图特征的放射学报告生成

Radiology Report Generation Integrating Multi-View Features

欧佳乐 1昝红英 1张坤丽 1师相龙 1马玉团1

作者信息

  • 1. 郑州大学 计算机与人工智能学院,郑州 450001
  • 折叠

摘要

Abstract

Radiology report generation involves extracting features from multiple source images and converting them into textual descriptions.The current research faces challenges related to multiple views and varying report lengths,resulting in insufficient accuracy and semantic incoherence in the generated clinical reports.To address these issues,a method that integrates features from multiple views is proposed,reducing information loss through multiple local feature extractions and fine-grained fusion from original images.Global context representation is obtained and embedded by using annota-tion tools,allowing the model to use more comprehensive text during training for smoother descriptions.Experiments on IU X-Ray and MIMIC-CXR datasets show an average improvement of 2.96 percentage points in report quality scores with the application of this method on the R2Gen model.Furthermore,experiments on a self-constructed Chinese lung CT report dataset for image report to diagnostic conclusion generation demonstrate the generality of the proposed method.

关键词

放射学报告生成/多视图/细粒度融合/全局上下文

Key words

radiology report generation/multiple views/fine-grained fusion/global context

分类

计算机与自动化

引用本文复制引用

欧佳乐,昝红英,张坤丽,师相龙,马玉团..融合多视图特征的放射学报告生成[J].计算机工程与应用,2025,61(10):320-330,11.

基金项目

郑州市协同创新重大专项(20XTZX11020). (20XTZX11020)

计算机工程与应用

OA北大核心

1002-8331

访问量0
|
下载量0
段落导航相关论文