| 注册
首页|期刊导航|计算机工程与应用|融合多源信息的碳价时滞组合预测

融合多源信息的碳价时滞组合预测

邹艳 王淑平 李欣岷 龚科

计算机工程与应用2025,Vol.61Issue(10):350-360,11.
计算机工程与应用2025,Vol.61Issue(10):350-360,11.DOI:10.3778/j.issn.1002-8331.2401-0109

融合多源信息的碳价时滞组合预测

Carbon Price Forecasting Based on Multi-Source Information Fusion and Time-Delay Effect

邹艳 1王淑平 1李欣岷 1龚科2

作者信息

  • 1. 重庆师范大学 经济与管理学院,重庆 401331
  • 2. 重庆交通大学 经济与管理学院,重庆 400074
  • 折叠

摘要

Abstract

The carbon price is the core element of the carbon market,and its fluctuations are influenced by numerous factors and their time-delay effects.To precisely forecast the price of Chinese emission allowances(CEA)in the national carbon market,structured influencing factors are selected from five dimensions:related carbon markets,economic development,foreign energy,domestic energy,and the RMB exchange rate.Unstructured influencing factors are crawled from three dimensions:economic policy,environmental impact,and user preference,using the Baidu search engine.The MIV-BP model is introduced to screen the main influencing factors and carbon price,and the time-delay of multi-source factors are estimated based on maximum information coefficient(MIC).On this basis,a time-delay combined prediction model for carbon price is constructed based on MIC,LSTM and BP.Compared with baseline models such as LSTM,BP,LSTM-BP,and time-delay baseline models MIC-LSTM,MIC-BP,and MIC-LSTM-GBDT,the effectiveness of the new model is verified.The results indicate that the introduction of time-delay information is helpful to improve the prediction accuracy of the model.Compared with the baseline and time-delay baseline models,the MIC-LSTM-BP model has the highest pre-cision in forecasting CEA prices and the best capability to follow price volatility.

关键词

全国碳市场/多源信息/影响因素筛选/时滞估计/组合预测/MIC-LSTM-BP模型

Key words

national carbon market/multi-source information/influence factor screening/time-delay estimation/com-bined prediction/MIC-LSTM-BP model

分类

经济学

引用本文复制引用

邹艳,王淑平,李欣岷,龚科..融合多源信息的碳价时滞组合预测[J].计算机工程与应用,2025,61(10):350-360,11.

基金项目

国家自然科学基金(71871034) (71871034)

教育部人文社科项目(23XJA630006) (23XJA630006)

重庆师范大学研究生科研创新项目(YKC24016). (YKC24016)

计算机工程与应用

OA北大核心

1002-8331

访问量0
|
下载量0
段落导航相关论文