首页|期刊导航|江苏大学学报(自然科学版)|基于FES-GALMBP模型的低速自动驾驶车辆服务质量测试评价

基于FES-GALMBP模型的低速自动驾驶车辆服务质量测试评价OA北大核心

Test and evaluation of service quality for low-speed automated driving vehicle based on FES-GALMBP model

中文摘要英文摘要

针对传统自动驾驶功能评价方法准确率低等问题,设计了基于V2I功能的自动驾驶车辆在环仿真测试平台,提出了一种FES-GALMBP评价算法.通过HotSpot关联规则法确定低速自动驾驶车辆服务质量的评价指标,基于AHP-CRITIC主客观组合权重优化确定指标权重,构建多级模糊综合评价模型(涵盖准则层、标准层与指标层权重计算);利用模糊专家系统对测试样本集进行评价,生成训练数据以训练FES-GALMBP神经网络模型.以低速自动驾驶巴士为应用场景,通过Prescan/MATLAB进行联合仿真,并完成实车测试.结果表明,使用所提出的FES-GALMBP模型与传统BP神经网络模型评价巴士运营,得到质量准确率分别为94%、59%,而安全准确率分别为8 0%、5 3%,且新模型预测每一类别的AUC值均大于传统BP模型,因此新模型分类器效果更好.

To solve the problem of service quality testing and evaluation for low-speed automated vehicles with low accuracy of traditional automated driving function evaluation methods,the V2I-based simulation test platform for autonomous vehicles in the loop was designed,and the FES-GALMBP evaluation algorithm was proposed.The evaluation indicators for low-speed autonomous vehicle service quality were determined by the HotSpot association rule method.The indicator weights were optimized through AHP-CRITIC subjective-objective combined weighting,and the multi-level fuzzy comprehensive evaluation model with incorporating criterion layer,standard layer and indicator layer weight calculations was constructed.The fuzzy expert system(FES)was utilized to evaluate the test sample set,and the evaluation results were used as training data for the FES-GALMBP neural network model.The Prescan/MATLAB was used to complete co-simulations and real-vehicle tests in low-speed autonomous bus scenarios.The results show that by the proposed FES-GALMBP model,the accuracy rates of 94% for operational quality and 80%for operational safety are achieved,which are significantly higher than those by the traditional BP neural network model with 59% and 53%,respectively.The AUC values for all prediction categories of the proposed model are higher than those of the traditional BP model,which illuminates that the novel model has superior classification performance.

梁军;戴雨辛;李俊虎;张星;张偲桁;华国栋

江苏大学汽车工程研究院,江苏镇江 212013江苏大学汽车工程研究院,江苏镇江 212013江苏大学汽车工程研究院,江苏镇江 212013江苏大学汽车工程研究院,江苏镇江 212013江苏大学汽车工程研究院,江苏镇江 212013江苏智行未来汽车研究院,江苏南京 211111

计算机与自动化

巴士自动驾驶低速场景服务质量评价V2I模糊专家系统关联规则BP神经网络

busautomated drivinglow-speed scenarioservice quality evaluationV2Ifuzzy expert systemassociation ruleBP neural network

《江苏大学学报(自然科学版)》 2025 (3)

266-275,10

国家自然科学基金资助项目(62376139)宝应县重点研发计划项目(BY201908)

10.3969/j.issn.1671-7775.2025.03.003

评论