| 注册
首页|期刊导航|江苏大学学报(自然科学版)|基于FES-GALMBP模型的低速自动驾驶车辆服务质量测试评价

基于FES-GALMBP模型的低速自动驾驶车辆服务质量测试评价

梁军 戴雨辛 李俊虎 张星 张偲桁 华国栋

江苏大学学报(自然科学版)2025,Vol.46Issue(3):266-275,10.
江苏大学学报(自然科学版)2025,Vol.46Issue(3):266-275,10.DOI:10.3969/j.issn.1671-7775.2025.03.003

基于FES-GALMBP模型的低速自动驾驶车辆服务质量测试评价

Test and evaluation of service quality for low-speed automated driving vehicle based on FES-GALMBP model

梁军 1戴雨辛 1李俊虎 1张星 1张偲桁 1华国栋2

作者信息

  • 1. 江苏大学汽车工程研究院,江苏镇江 212013
  • 2. 江苏智行未来汽车研究院,江苏南京 211111
  • 折叠

摘要

Abstract

To solve the problem of service quality testing and evaluation for low-speed automated vehicles with low accuracy of traditional automated driving function evaluation methods,the V2I-based simulation test platform for autonomous vehicles in the loop was designed,and the FES-GALMBP evaluation algorithm was proposed.The evaluation indicators for low-speed autonomous vehicle service quality were determined by the HotSpot association rule method.The indicator weights were optimized through AHP-CRITIC subjective-objective combined weighting,and the multi-level fuzzy comprehensive evaluation model with incorporating criterion layer,standard layer and indicator layer weight calculations was constructed.The fuzzy expert system(FES)was utilized to evaluate the test sample set,and the evaluation results were used as training data for the FES-GALMBP neural network model.The Prescan/MATLAB was used to complete co-simulations and real-vehicle tests in low-speed autonomous bus scenarios.The results show that by the proposed FES-GALMBP model,the accuracy rates of 94% for operational quality and 80%for operational safety are achieved,which are significantly higher than those by the traditional BP neural network model with 59% and 53%,respectively.The AUC values for all prediction categories of the proposed model are higher than those of the traditional BP model,which illuminates that the novel model has superior classification performance.

关键词

巴士/自动驾驶/低速场景/服务质量评价/V2I/模糊专家系统/关联规则/BP神经网络

Key words

bus/automated driving/low-speed scenario/service quality evaluation/V2I/fuzzy expert system/association rule/BP neural network

分类

信息技术与安全科学

引用本文复制引用

梁军,戴雨辛,李俊虎,张星,张偲桁,华国栋..基于FES-GALMBP模型的低速自动驾驶车辆服务质量测试评价[J].江苏大学学报(自然科学版),2025,46(3):266-275,10.

基金项目

国家自然科学基金资助项目(62376139) (62376139)

宝应县重点研发计划项目(BY201908) (BY201908)

江苏大学学报(自然科学版)

OA北大核心

1671-7775

访问量0
|
下载量0
段落导航相关论文