| 注册
首页|期刊导航|机电工程技术|基于高效局部注意力和全局上下文增强的遥感影像建筑物提取方法

基于高效局部注意力和全局上下文增强的遥感影像建筑物提取方法

张永城 刘春阳 刘裕芸 王德金

机电工程技术2025,Vol.54Issue(6):28-33,39,7.
机电工程技术2025,Vol.54Issue(6):28-33,39,7.DOI:10.3969/j.issn.1009-9492.2025.00014

基于高效局部注意力和全局上下文增强的遥感影像建筑物提取方法

A Building Extraction Method for Remote Sensing Images Based on Efficient Local Attention and Global Context Enhancement

张永城 1刘春阳 1刘裕芸 2王德金2

作者信息

  • 1. 安徽理工大学空间信息与测绘工程学院,安徽 淮南 232001||矿山采动灾害空天地协同临测与预警安徽普通高校重点实验室,安徽 淮南 232001||安徽理工大学矿区环境与灾害协同监测煤炭行业工程研究中心,安徽 淮南 232001
  • 2. 安徽理工大学空间信息与测绘工程学院,安徽 淮南 232001
  • 折叠

摘要

Abstract

As the main component of the city,the study of accurate and efficient extraction of building information from high-resolution remote sensing images is of great significance for urban planning,land use,and disaster assessment.However,when semantic segmentation means are used for building information extraction,problems such as low segmentation accuracy,omission,and wrong extraction are often present.In addressing the issues above,a global context-enhanced feature extraction network is proposed based on the U-Net network to enhance the extraction of building context-detail features in the feature extraction phase and reduce the possibility of false detection;meanwhile,the efficient local attention is introduced to achieve the accurate differentiation of the building regions and the problem of fine extraction of buildings under complex background is solved.To verify the effectiveness of the method,experiments are conducted on two building datasets and compared with mainstream semantic segmentation methods.In the experimental section of the WHU dataset,the proposed methodology attained IoU,Precision,Recall,and F1 scores of 90.21%,94.96%,94.74%,and 94.85%,respectively.It is significantly higher than the other comparative networks and the effect of building segmentation in the resultant graphs is more refined,and the universality of the network is also verified in the Guiyang dataset.

关键词

遥感影像/建筑物提取/深度学习/Unet/注意力机制

Key words

remote sensing imagery/building extraction/deep learning/Unet/attention mechanism

分类

测绘与仪器

引用本文复制引用

张永城,刘春阳,刘裕芸,王德金..基于高效局部注意力和全局上下文增强的遥感影像建筑物提取方法[J].机电工程技术,2025,54(6):28-33,39,7.

基金项目

矿山采动灾害空天地协同监测与预警安徽普通高校重点实验室(安徽理工大学)开放基金资助(KLAHEI202203) (安徽理工大学)

机电工程技术

1009-9492

访问量0
|
下载量0
段落导航相关论文