| 注册
首页|期刊导航|机电工程技术|基于改进MobileNetV3的钢轨表面伤损识别模型

基于改进MobileNetV3的钢轨表面伤损识别模型

郭睿 姜云龙 宁善平

机电工程技术2025,Vol.54Issue(6):34-39,6.
机电工程技术2025,Vol.54Issue(6):34-39,6.DOI:10.3969/j.issn.1009-9492.2025.06.007

基于改进MobileNetV3的钢轨表面伤损识别模型

Improved Model for Rail Surface Damage Recognition Based on MobileNetV3

郭睿 1姜云龙 1宁善平2

作者信息

  • 1. 长春理工大学材料科学与工程学院,长春 130012
  • 2. 广东交通职业技术学院轨道交通学院,广州 510650
  • 折叠

摘要

Abstract

Aiming to address the issues of insufficient accuracy and slow model convergence in the detection of rail surface damage,a high-performance lightweight model for recognizing surface damage on steel rails is proposed.By introducing a channel attention(CA)module containing spatial coordinate information,the precision of feature extraction and the generalization ability of the model are improved.The improved MobileNet V3 network is utilized as the backbone network to achieve model lightweight and efficiency.To verify the effectiveness,a dataset for rail surface damage is created.Experimental results show that on the rail surface damage dataset constructed,the initial recognition accuracy of MobileNet V3 is only 91.8%with an F1 score of 91.5%;the improved model increases the recognition accuracy and F1 score to 93.8%and 93.6%respectively;with a parameter quantity and time consumption of only 7.01×106,significantly less than other models.The improved MobileNet V3 model can effectively recognize rail surface damage,greatly reduce model parameters,improve detection speed,and provide an efficient means for detecting rail surface damage.

关键词

改进MobileNetV3/CA模块/钢轨表面伤损/轻量化

Key words

improved MobileNetV3/CA module/steel rail surface damage/lightweight

分类

计算机与自动化

引用本文复制引用

郭睿,姜云龙,宁善平..基于改进MobileNetV3的钢轨表面伤损识别模型[J].机电工程技术,2025,54(6):34-39,6.

基金项目

2024年广东省科技创新战略专项资金(pdjh2024b573) (pdjh2024b573)

机电工程技术

1009-9492

访问量0
|
下载量0
段落导航相关论文