| 注册
首页|期刊导航|机电工程技术|基于优化Faster-RCNN遥感影像飞机目标检测算法

基于优化Faster-RCNN遥感影像飞机目标检测算法

刘裕芸 刘春阳 周绍鸿 张永城 王德金

机电工程技术2025,Vol.54Issue(6):70-77,8.
机电工程技术2025,Vol.54Issue(6):70-77,8.DOI:10.3969/j.issn.1009-9492.2024.00127

基于优化Faster-RCNN遥感影像飞机目标检测算法

Aircraft Target Detection Algorithm Based on Optimized Faster-RCNN Remote Sensing Images

刘裕芸 1刘春阳 1周绍鸿 2张永城 2王德金2

作者信息

  • 1. 安徽理工大学空间信息与测绘工程学院,安徽 淮南 232001||矿山采动灾害空天地协同临测与预警安徽普通高校重点实验室,安徽 淮南 232001||安徽理工大学矿区环境与灾害协同监测煤炭行业工程研究中心,安徽 淮南 232001
  • 2. 安徽理工大学空间信息与测绘工程学院,安徽 淮南 232001
  • 折叠

摘要

Abstract

Aiming at the problem of small dataset size of aircraft target detection in remote sensing imagery at this stage,the dataset is expanded by using the data enhancement methods of level-flipping and grayscale transformation,which can,to a certain extent,improve the accuracy of aircraft target detection and alleviate the phenomenon of overfitting.To solve the problem of shallow VGG16 network layers and insufficient feature extraction in Faster-RCNN,ResNet50 is used as the feature extraction network,which can refine deeper and abstract target features,and the residual structure in ResNet50 is beneficial to solve the problems in the case of deepening of the network depth,gradient eruption,and insignificant network performance enhancement.In order to solve the region mismatch problem caused by the two quantization of ROI Pooling,the ROI Align bilinear interpolation method is used to cancel the two quantization operations,obtain more accurate pixel coordinates,and transform the whole feature aggregation process into a continuous operation.The final optimized Faster-RCNN achieves98.72%aircraft target detection accuracy on RSOD dataset,and also has good generalization performance on UCAS-AOD dataset,which verifies the effectiveness of the optimized model.

关键词

遥感影像/数据增强/飞机目标检测/Faster-RCNN/深度学习

Key words

remote sensing images/data augmentation/aircraft target detection/Faster-RCNN/deep learning

分类

信息技术与安全科学

引用本文复制引用

刘裕芸,刘春阳,周绍鸿,张永城,王德金..基于优化Faster-RCNN遥感影像飞机目标检测算法[J].机电工程技术,2025,54(6):70-77,8.

基金项目

安徽省自然科学基金面上项目(2108085MD130) (2108085MD130)

矿山采动灾害空天地协同监测与预警安徽普通高校重点实验室(安徽理工大学)开放基金资助(KLAHEI202203) (安徽理工大学)

机电工程技术

1009-9492

访问量0
|
下载量0
段落导航相关论文