| 注册
首页|期刊导航|河南理工大学学报(自然科学版)|基于YOLOv5的瓦斯抽采钻杆智能计数研究

基于YOLOv5的瓦斯抽采钻杆智能计数研究

赵伟 张文康 刘德成 王涛 王登科 夏代林 周礼赞 李志飞

河南理工大学学报(自然科学版)2025,Vol.44Issue(3):81-88,8.
河南理工大学学报(自然科学版)2025,Vol.44Issue(3):81-88,8.DOI:10.16186/j.cnki.1673-9787.2024060009

基于YOLOv5的瓦斯抽采钻杆智能计数研究

Research on intelligent counting of gas extraction drill rods based on YOLOv5

赵伟 1张文康 1刘德成 1王涛 1王登科 2夏代林 3周礼赞 3李志飞3

作者信息

  • 1. 河南龙宇能源股份有限公司,河南 永城 476600
  • 2. 河南理工大学 河南省瓦斯地质与瓦斯治理重点实验室,河南 焦作 454000
  • 3. 武汉天宸伟业物探科技有限公司,湖北 武汉 430070
  • 折叠

摘要

Abstract

Objectives With the increasing depth of coal mining operations,the safety risks associated with gas extraction have become more prominent.Accurate counting of drill rods is essential for ensuring the safety and efficiency of gas extraction.Traditional methods are often inefficient,error-prone,and struggle to perform reliably in complex underground environments.Methods This study proposes an intelligent drill rod counting method based on the YOLOv5 deep learning model,enhanced by spatiotemporal information fusion.The method processes underground video data in real time to achieve automatic detection and count-ing of drill rods.The dataset consists of 28 simulated drill withdrawal scenarios across 7 groups and 10 real-world withdrawal scenarios.To improve model robustness,data augmentation techniques such as overexpo-sure,underexposure,smoke interference,and mirroring were employed.Four YOLOv5 variants(YO-LOv5s,YOLOv5m,YOLOv5l,YOLOv5x)were compared to identify the most suitable model.Addition-ally,drill rod count updates were optimized by incorporating features such as abrupt changes in area and Intersection over Union(IoU)values.Results Experimental results demonstrated that all four YOLOv5 mod-els achieved an accuracy of 99.5%and a recall rate of 100%on the dataset.YOLOv5s was selected for sub-sequent use due to its balance of accuracy and computational efficiency.Conclusions The proposed method achieved 100%correct counting in both simulated and real drill withdrawal scenarios,demonstrating excel-lent accuracy and robustness.By minimizing manual intervention,it significantly enhances the automation of drill rod counting and shows strong potential for application in coal mine safety and other industrial auto-mation monitoring fields.

关键词

钻杆计数/目标检测/时空融合/深度学习/瓦斯抽采

Key words

drill rod counting/object detection/spatiotemporal fusion/deep learning/gas extraction

分类

矿山工程

引用本文复制引用

赵伟,张文康,刘德成,王涛,王登科,夏代林,周礼赞,李志飞..基于YOLOv5的瓦斯抽采钻杆智能计数研究[J].河南理工大学学报(自然科学版),2025,44(3):81-88,8.

基金项目

国家自然科学基金资助项目(52174174) (52174174)

河南理工大学学报(自然科学版)

OA北大核心

1673-9787

访问量0
|
下载量0
段落导航相关论文