| 注册
首页|期刊导航|临床口腔医学杂志|基于深度学习预测全冠修复体脱落的风险

基于深度学习预测全冠修复体脱落的风险

刘哲 何晓勇 胡金涵 徐国强

临床口腔医学杂志2025,Vol.41Issue(5):296-300,5.
临床口腔医学杂志2025,Vol.41Issue(5):296-300,5.DOI:10.3969/j.issn.1003-1634.2025.05.009

基于深度学习预测全冠修复体脱落的风险

Predicting the risk of full crown restoration debonding based on deep learning

刘哲 1何晓勇 1胡金涵 1徐国强1

作者信息

  • 1. 新疆医科大学第一附属医院(附属口腔医院)口腔修复种植科 新疆 乌鲁木齐 830054||新疆维吾尔自治区口腔医学研究所 新疆 乌鲁木齐 830054
  • 折叠

摘要

Abstract

Objective:To clinically collect a dataset of plaster models from crown debonding and non-debonding ca-ses,and to use deep learning models to predict the risk of crown debonding.Methods:Clinically collect plaster models of crown debonding and non-debonding cases.Obtain three-dimensional images using an intraoral scanner and generate two-di-mensional images for the dataset.The dataset includes 20 cases(10 cases of debonding and 10 cases without debonding),re-sulting in a total of 16,920 images.These images are randomly allocated into 16,200 training images,360 testing images,and 360 validation images.The performance of three models—CNN,ResNet50,and EfficientNetB0—is compared to determine which model performs best.Results:The accuracy,precision,F-measure for the three models were as follows:CNN(0.995,0.993,0.991),ResNet50(0.957,0.962,0.952),EfficientNetB0(0.885,0.901,0.879),and for AUC:CNN(0.999),Res-Net50(0.997),and EfficientNetB0(0.992).Conclusion:Among CNN,ResNet50,and EfficientNetB0,the CNN model dem-onstrated the best performance in predicting the debonding of full crown restorations.

关键词

机器学习/深度学习/卷积神经网络/人工智能/全冠修复体/可视化分析/卷积块注意力模块

Key words

Machine learning/Deep learning/Convolutional neural network/Artificial intelligence/Full crown resto-ration/Data visualization analysis/Convolutional block attention module(CBAM)

分类

口腔医学

引用本文复制引用

刘哲,何晓勇,胡金涵,徐国强..基于深度学习预测全冠修复体脱落的风险[J].临床口腔医学杂志,2025,41(5):296-300,5.

临床口腔医学杂志

1003-1634

访问量0
|
下载量0
段落导航相关论文