| 注册
首页|期刊导航|岭南现代临床外科|基于机器学习构建中性粒细胞胞外诱捕网基因评分预测非肌层浸润性膀胱癌复发的临床价值

基于机器学习构建中性粒细胞胞外诱捕网基因评分预测非肌层浸润性膀胱癌复发的临床价值

黄孝东 王博 黄健

岭南现代临床外科2025,Vol.25Issue(2):91-100,10.
岭南现代临床外科2025,Vol.25Issue(2):91-100,10.DOI:10.3969/j.issn.1009-976X.2025.02.003

基于机器学习构建中性粒细胞胞外诱捕网基因评分预测非肌层浸润性膀胱癌复发的临床价值

Machine learning-based NETs gene signature predicts recurrence in non-muscle-invasive bladder cancer

黄孝东 1王博 1黄健1

作者信息

  • 1. 中山大学孙逸仙纪念医院广东省恶性肿瘤表观遗传学与基因调控重点实验室,广州 510120||中山大学孙逸仙纪念医院泌尿外科,广州 510120
  • 折叠

摘要

Abstract

Objective Neutrophil extracellular traps(NETs)can be stimulated by various factors,including drug perfusion and tumor cell stimulation,thereby influencing the prognosis of cancer patients.However,the prognostic impact and key functional genes of NETs in the recurrence of non-muscle-inva-sive bladder cancer(NMIBC)remain unclear.This study aims to identify critical NETs-related genes associated with NMIBC recurrence and provide a reliable predictive tool for clinical recurrence assessment.Methods Transcriptomic data and clinical information from bladder cancer patients were obtained from the GEO database(GSE13507,GSE128959,GSE19423,GSE154261,GSE31684,GSE169455),and somatic copy number variation(CNV)data were retrieved from TCGA.Using machine learning algorithms and weighted gene co-expression network analysis(WGCNA),we identified 153 NETs-related genes and constructed a recurrence prediction score(NRG),which was validated in a training cohort.We compre-hensively analyzed the impact of this score on gene expression,the immune microenvironment,and func-tional pathways in bladder cancer.Additionally,we explored potential sensitivities to NRG-associated small-molecule compounds to identify therapeutic targets for clinical intervention.Results This study identified three NETs-related genes(G0S2,CCL5,and CLEC7A)as independent prognostic predictors for postoperative recurrence in NMIBC patients.The NRG score effectively predicted recurrence outcomes in the training cohort,demonstrating diagnostic AUC values of 0.671 and 0.645 in two independent NMIBC datasets,with significant prognostic stratification(P=0.039).Genomic and immune infiltration analyses revealed that high-NRG patients exhibited more frequent PIK3CA mutations and increased infiltration of immunosuppressive cell subsets.Functional enrichment indicated hyperactivation of immune checkpoint pathways in high-NRG cases.Drug sensitivity analysis suggested that targeting NRG may reduce recur-rence risk by inhibiting the PI3K-mTOR and ERK signaling axes,providing potential therapeutic strate-gies for NMIBC.Conclusion This study established a NETs-derived recurrence prediction signature(NRG)for NMIBC and elucidated its immunomodulatory effects within the tumor microenvironment,functional pathway alterations,and potential small-molecule therapeutic targets.

关键词

膀胱癌/机器学习/中性粒细胞胞外诱捕网/药物靶点

Key words

bladder cancer/machine learning/neutrophil extracellular traps/therapeutic targets

分类

临床医学

引用本文复制引用

黄孝东,王博,黄健..基于机器学习构建中性粒细胞胞外诱捕网基因评分预测非肌层浸润性膀胱癌复发的临床价值[J].岭南现代临床外科,2025,25(2):91-100,10.

基金项目

国家自然科学基金(82173230) (82173230)

岭南现代临床外科

1009-976X

访问量0
|
下载量0
段落导航相关论文