| 注册
首页|期刊导航|量子电子学报|近红外光谱联合机器学习测定樱桃番茄中的番茄红素

近红外光谱联合机器学习测定樱桃番茄中的番茄红素

高翔堃 董璇 刘超 詹杰 黄青

量子电子学报2025,Vol.42Issue(3):313-323,11.
量子电子学报2025,Vol.42Issue(3):313-323,11.DOI:10.3969/j.issn.1007-5461.2025.03.003

近红外光谱联合机器学习测定樱桃番茄中的番茄红素

Determination of lycopene in cherry tomatoes using near infrared spectroscopy combined with machine learning

高翔堃 1董璇 1刘超 1詹杰 2黄青2

作者信息

  • 1. 中国科学院合肥物质科学研究院,安徽 合肥 230031||中国科学技术大学,安徽 合肥 230026
  • 2. 中国科学院合肥物质科学研究院,安徽 合肥 230031
  • 折叠

摘要

Abstract

Qualitative and quantitative analysis models were established using machine learning algorithms for near infrared(NIR)spectroscopy detection of lycopene in cherry tomatoes.Firstly,the extraction and detection methods of lycopene were optimized,and then based on the selected spectral in the bands of 7000-8000 cm-1 and 10000-11000 cm-1,a synergy interval partial least squares model(siPLS)for the prediction of lycopene content in cherry tomatoes was established.Compared with the commonly used partial least squares(PLS)quantitative model at present,the siPLS model has a certain improvement in the prediction accuracy,with training set correlation coefficient Rc of 0.8008,training set cross validation root mean square error ERMSECV of 9.56 mg/kg,and test set correlation coefficient Rp of 0.8683,test set root mean square error ERMSEP of 4.59 mg/kg.Furthermore,the support vector regression(SVR)algorithm was introduced to establish a quantitative model,and the comparison results show that the SVR model has better performance than the siPLS model,with Rc=0.9559,ERMSEC=4.229 mg/kg and Rp=0.8959,ERMSEP=8.363 mg/kg.Finally,a concentration classification model of lycopene in cherry tomato was established based on the support vector machine(SVM)and multi-channel convolutional neural network-gated recurrent unit(CNN-GRU)joint model,and the result shows that compared with the SVR model,the multi-channel CNN-GRU joint model has higher qualitative recognition accuracy.

关键词

光谱学/定性和定量分析模型/机器学习/番茄红素/樱桃番茄/组合间隔偏最小二乘

Key words

spectroscopy/qualitative and quantitative analysis models/machine learning/lycopene/cherry tomato/synergy interval partial least squares

分类

化学

引用本文复制引用

高翔堃,董璇,刘超,詹杰,黄青..近红外光谱联合机器学习测定樱桃番茄中的番茄红素[J].量子电子学报,2025,42(3):313-323,11.

基金项目

安徽省中央引导地方科技发展专项资金项目(S20200706050011) (S20200706050011)

量子电子学报

OA北大核心

1007-5461

访问量0
|
下载量0
段落导航相关论文