| 注册
首页|期刊导航|量子电子学报|Lipkin-Meshkov-Glick模型中的自旋压缩和量子纠缠

Lipkin-Meshkov-Glick模型中的自旋压缩和量子纠缠

李嵩松

量子电子学报2025,Vol.42Issue(3):361-368,8.
量子电子学报2025,Vol.42Issue(3):361-368,8.DOI:10.3969/j.issn.1007-5461.2025.03.008

Lipkin-Meshkov-Glick模型中的自旋压缩和量子纠缠

Spin squeezing and quantum entanglement in Lipkin-Meshkov-Glick model

李嵩松1

作者信息

  • 1. 南昌师范学院物理与电子信息学院,江西 南昌 330032
  • 折叠

摘要

Abstract

Spin squeezing and quantum entanglement have significant and widespread applications in quantum information processing.Therefore,how to generate spin squeezing and quantum entanglement in various quantum systems has become a very important research topic.In this paper,we theoretically investigate how to generate spin squeezing and quantum entanglement in the Lipkin-Meshkov-Glick model.Using spin-wave approximation,we analytically calculate the effects of the spin-spin interaction parameter and the linear interaction parameter on quantum entanglement and spin squeezing.The results show that spin squeezing and quantum entanglement can be periodically generated by adjusting the linear interaction strength,spin-spin interaction strength and its evolution time.And it is also shown that the smaller the linear interaction parameter or the stronger the spin-spin interaction,the better the entanglement and spin squeezing,and the larger the period.

关键词

量子光学/自旋压缩/量子纠缠/Lipkin-Meshkov-Glick模型/自旋波近似

Key words

quantum optics/spin squeezing/quantum entanglement/Lipkin-Meshkov-Glick model/spin-wave approximation

分类

数理科学

引用本文复制引用

李嵩松..Lipkin-Meshkov-Glick模型中的自旋压缩和量子纠缠[J].量子电子学报,2025,42(3):361-368,8.

基金项目

江西省教育厅科技项目(GJJ212611),南昌市重点实验室项目(2021-NCZDSY-015) (GJJ212611)

量子电子学报

OA北大核心

1007-5461

访问量0
|
下载量0
段落导航相关论文