| 注册
首页|期刊导航|密码学报(中英文)|可调随机置换与随机函数的量子不可区分性紧界

可调随机置换与随机函数的量子不可区分性紧界

郭晓宁 郭淳

密码学报(中英文)2025,Vol.12Issue(2):297-309,13.
密码学报(中英文)2025,Vol.12Issue(2):297-309,13.DOI:10.13868/j.cnki.jcr.000762

可调随机置换与随机函数的量子不可区分性紧界

Tight Bounds for Quantum Indistinguishability of Tweakable Random Permutations from Random Functions

郭晓宁 1郭淳2

作者信息

  • 1. 山东大学 网络空间安全学院,青岛 266237
  • 2. 山东大学 网络空间安全学院,青岛 266237||密码技术与信息安全教育部重点实验室,青岛 266237
  • 折叠

摘要

Abstract

The development of quantum computers has forced the community to reevaluate the concrete security of various cryptographic problems against quantum attacks.This study focuses on the problem of distinguishing a tweakable random permutation from a random function on {0,1}t ×{0,1}n → {0,1}n.The hardness of this problem has been a central tool in security proofs of several cryptographic constructions.It is well-known that classical adversaries need Ω(2n/2)queries to achieve a constant success probability.In the quantum regime,Hosoyamada and Iwata(Asiacrypt 2019)proved that Q(2n/6)superposition queries are necessary to achieve a constant success probability,but left tightening the bound as an open problem.We revisit this problem using the"polynomial"proof method of Zhandry(FOCS 2012)and improve the lower bound to Q(2n/3).Using this conclusion,we also improve the quantum chosen-plaintext attack(qCPA)security bounds of the tweakable block cipher constructions LRWQ,TNT,and LRQ based on block ciphers from O(2n/6)to O(2n/4),O(2n/3),and O(2n/4),respectively.

关键词

后量子密码/Q2模型/可调随机置换/量子伪随机函数

Key words

post-quantum cryptography/Q2 model/tweakable random permutation/quantum pseudorandom function

分类

计算机与自动化

引用本文复制引用

郭晓宁,郭淳..可调随机置换与随机函数的量子不可区分性紧界[J].密码学报(中英文),2025,12(2):297-309,13.

基金项目

国家自然科学基金(62002202,62372274)National Natural Science Foundation of China(62002202,62372274) (62002202,62372274)

密码学报(中英文)

OA北大核心

2095-7025

访问量0
|
下载量0
段落导航相关论文