| 注册
首页|期刊导航|南京邮电大学学报(自然科学版)|基于图神经网络和用户长短期偏好的会话推荐

基于图神经网络和用户长短期偏好的会话推荐

卢官明 柯润宇 卢峻禾 丁佳伟 魏金生

南京邮电大学学报(自然科学版)2025,Vol.45Issue(2):77-85,9.
南京邮电大学学报(自然科学版)2025,Vol.45Issue(2):77-85,9.DOI:10.14132/j.cnki.1673-5439.2025.02.009

基于图神经网络和用户长短期偏好的会话推荐

Session-based recommendation using graph neural networks and user long short-term preferences

卢官明 1柯润宇 1卢峻禾 2丁佳伟 1魏金生1

作者信息

  • 1. 南京邮电大学通信与信息工程学院,江苏南京 210003
  • 2. 南京邮电大学计算机学院,江苏南京 210023
  • 折叠

摘要

Abstract

Since existing session-based recommendation methods usually ignore user long-term prefer-ences and correlations between different items,this paper proposes a session-based recommendation model based on graph neural networks and user long short-term preferences(GNN-LSTUP).First,a global session graph is constructed based on all sessions,and the user long-term preferences are mined by incorporating a graph neural network with correlation encoding and attention mechanisms.Second,the user short-term preferences are captured by constructing a local session graph and utilizing graph neural networks and attention mechanisms.Finally,the user long-term and short-term preferences are fused through sum-pooling operations to accurately predict the user's next interaction behavior.Experiments are conducted on the Diginetica,Tmall and Nowplaying datasets,and the results show that the proposed GNN-LSTUP achieved P@20 of 54.19%,34.68%,23.32%with MRR@20 of 18.94%,16.96%,8.62%on the Diginetica,Tmall,and Nowpaying datasets,respectively,which are superior to those of the exist-ing session-based recommendation models by other researchers.

关键词

会话推荐/图神经网络/用户偏好/相关性

Key words

session-based recommendation/graph neural network(GNN)/user preferences/relevance

分类

计算机与自动化

引用本文复制引用

卢官明,柯润宇,卢峻禾,丁佳伟,魏金生..基于图神经网络和用户长短期偏好的会话推荐[J].南京邮电大学学报(自然科学版),2025,45(2):77-85,9.

基金项目

国家自然科学基金(72074038)和南京邮电大学引进人才自然科学研究启动基金(NY223030)资助项目 (72074038)

南京邮电大学学报(自然科学版)

OA北大核心

1673-5439

访问量0
|
下载量0
段落导航相关论文