| 注册
首页|期刊导航|情报杂志|基于多模态深度学习的专利自动分类方法研究

基于多模态深度学习的专利自动分类方法研究

谢小东 吴洁 盛永祥 唐健廷 于娱

情报杂志2025,Vol.44Issue(5):199-206,封3,9.
情报杂志2025,Vol.44Issue(5):199-206,封3,9.DOI:10.3969/j.issn.1002-1965.2025.05.024

基于多模态深度学习的专利自动分类方法研究

Research on Automatic Patent Classification Method Based on Multimodal Deep Learning

谢小东 1吴洁 1盛永祥 1唐健廷 1于娱2

作者信息

  • 1. 江苏科技大学经济管理学院 镇江 212003
  • 2. 南京审计大学商学院 南京 211815
  • 折叠

摘要

Abstract

[Research purpose]Developing a multimodal deep learning-based patent automatic classification method to enhance classifica-tion efficiency,expedite the patent examination process,and reduce resource and labor costs.[Research method]The proposed method leverages the BERT-for-Patents model to extract textual features and the VGG19 model to extract visual features from patent data.These multimodal features are integrated and subjected to joint training through a stepwise concatenation process.The citation network among nodes is optimized by constructing connections between low-degree nodes of the same type.Finally,the GraphSAGE model is utilized for automatic patent classification.[Research result/conclusion]The study demonstrates that the proposed method achieves a classification accuracy of 95.71%for all constructed categories,90.19%for major categories,and 84.42%for subcategories,significantly outperfor-ming baseline models across all metrics.This method effectively leverages both patent text and image information,addressing the limita-tions of unimodal data and enhancing the model's ability to comprehend complex patent content.Consequently,it improves the granularity and accuracy of automatic patent classification,while also providing a valuable supplement to the existing research framework for patent classification.

关键词

多模态/深度学习/专利分类/文本特征/图像特征/特征融合/网络关系优化

Key words

multimodal/deep learning/patent classification/text features/image features/feature fusion/network relationship optimiza-tion

分类

计算机与自动化

引用本文复制引用

谢小东,吴洁,盛永祥,唐健廷,于娱..基于多模态深度学习的专利自动分类方法研究[J].情报杂志,2025,44(5):199-206,封3,9.

基金项目

国家自然科学基金面上项目"面向产业安全的产业创新生态系统韧性内涵、评价与优化策略研究"(编号:72171122) (编号:72171122)

江苏省研究生科研与实践创新计划项目"创新联合体潜在合作伙伴选择及合作方向研究"(编号:KYCX23_3817)研究成果. (编号:KYCX23_3817)

情报杂志

OA北大核心

1002-1965

访问量0
|
下载量0
段落导航相关论文