| 注册
首页|期刊导航|全球能源互联网|面向数字孪生配电网的低时延业务决策方法

面向数字孪生配电网的低时延业务决策方法

彭琳钰 刘晴 刘旭 汤玮 郑智浩 刘康 廖畅

全球能源互联网2025,Vol.8Issue(3):368-377,10.
全球能源互联网2025,Vol.8Issue(3):368-377,10.DOI:10.19705/j.cnki.issn2096-5125.2025.03.012

面向数字孪生配电网的低时延业务决策方法

Low Delay Service Decision Method for Digital Twin Distribution Network

彭琳钰 1刘晴 1刘旭 1汤玮 1郑智浩 2刘康 1廖畅3

作者信息

  • 1. 贵州电网有限责任公司,贵州省 贵阳市 550002
  • 2. 贵州电网有限责任公司遵义供电局,贵州省 遵义市 563000
  • 3. 贵州电网有限责任公司贵安供电局,贵州省 贵阳市 550025
  • 折叠

摘要

Abstract

Digital twin(DT)can significantly improve the real-time decision-making ability of the distribution network by learning optimal service decisions through model parameter iterations.On the other hand,edge computing can reduce the communication and computational burden of data-driven DT models by sinking model training tasks to the edge side.However,the distribution of resources and model training requirements are incompatible,resulting in a lot of resource waste.This paper proposes a low delay service decision method for digital twin distribution network.First,a low-latency service decision-making framework is constructed,and edge collaboration is used to improve the accuracy and efficiency of distribution network DT model training.Establish the optimization problem of minimizing the weighted sum of model training delay and loss.Second,an edge cooperative decision algorithm based on bidirectional greedy evolution is proposed.Q learning is utilized to jointly optimize the timeliness and accuracy of model training under the condition of unknown global information,and solves the problem of cooperative server selection conflict based on greedy strategy.Finally,the simulation results show that compared to reinforcement learning-based service decision(RSD)algorithm and greedy-based service decision(GSD)algorithm.The proposed algorithm reduces the global loss function by 43.32%and 71.33%,and reduces the total delay of global model aggregation by 14.87%and 56.42%.

关键词

配电网/数字孪生/边缘协作/低时延业务决策/双向贪婪演进

Key words

distribution network/digital twin/edge collaboration/low latency service decision/bidirectional greedy evolution

分类

动力与电气工程

引用本文复制引用

彭琳钰,刘晴,刘旭,汤玮,郑智浩,刘康,廖畅..面向数字孪生配电网的低时延业务决策方法[J].全球能源互联网,2025,8(3):368-377,10.

基金项目

贵州电网有限责任公司科技项目(066500GS62200017). Science and Technology Project of Guizhou Power Grid Co.,Ltd.(066500GS62200017). (066500GS62200017)

全球能源互联网

OA北大核心

2096-5125

访问量0
|
下载量0
段落导航相关论文