| 注册
首页|期刊导航|软件导刊|深度学习训练性能优化:原理、技术与工具

深度学习训练性能优化:原理、技术与工具

介飞 张海俊 汪锦想

软件导刊2025,Vol.24Issue(5):1-7,7.
软件导刊2025,Vol.24Issue(5):1-7,7.DOI:10.11907/rjdk.241918

深度学习训练性能优化:原理、技术与工具

Training Performance Optimization in Deep Learning:Principles,Techniques and Tools

介飞 1张海俊 1汪锦想2

作者信息

  • 1. 科大讯飞股份有限公司 核心研发平台,安徽 合肥 230088||中国科学技术大学 计算机科学与技术学院,安徽 合肥 230027
  • 2. 科大讯飞股份有限公司 核心研发平台,安徽 合肥 230088
  • 折叠

摘要

Abstract

As the scale of models and data in training tasks of deep learning grows rapidly,the costs associated with model training continue to rise,making efficient model training one of the primary challenges in deploying deep learning solutions.This paper analyzes the general principles of performance optimization in deep learning training.Starting from the typical training workflow,it systematically analyzes and sum-marizes common performance optimization techniques for heterogeneous computing models.These techniques can be categorized based on their stage of application:data preparation,forward/backward propagation,gradient synchronization,and parameter update.From a computer ar-chitecture perspective,these techniques can further be classified into optimizations in computation,communication,memory,and I/O.This paper also introduces commonly used tools for performance analysis and visualization in deep learning,so as to provide a valuable reference for practitioners engaged in optimizing training performance of deep learning.

关键词

训练性能/深度学习/前向计算/反向传播/参数更新/负载均衡

Key words

training performance/deep learning/forward computation/backward propagation/parameter update/workload balance

分类

计算机与自动化

引用本文复制引用

介飞,张海俊,汪锦想..深度学习训练性能优化:原理、技术与工具[J].软件导刊,2025,24(5):1-7,7.

基金项目

安徽省博士后研究人员科研活动经费资助项目(2022B588) (2022B588)

软件导刊

1672-7800

访问量2
|
下载量0
段落导航相关论文