| 注册
首页|期刊导航|软件导刊|基于深度学习的表面肌电手势识别研究进展

基于深度学习的表面肌电手势识别研究进展

陈怡宁 于益芝

软件导刊2025,Vol.24Issue(5):8-15,8.
软件导刊2025,Vol.24Issue(5):8-15,8.DOI:10.11907/rjdk.241947

基于深度学习的表面肌电手势识别研究进展

Research Progress on Surface Electromyography Gesture Recognition Based on Deep Learning

陈怡宁 1于益芝1

作者信息

  • 1. 上海理工大学 健康科学与工程学院,上海 200093||海军军医大学基础医学院免疫学教研室暨免疫与炎症全国重点实验室,上海 200433
  • 折叠

摘要

Abstract

Surface electromyography(sEMG)is a non-invasive bioelectrical signal with rich information about muscle activity,which is wide-ly used in intention recognition studies.With the rapid development of deep learning technology,the accuracy of gesture recognition based on sEMG has been significantly improved,showing a broad application prospect.This review briefly introduces the sEMG gesture recognition pro-cess based on deep learning,focuses on summarizing the research progress and application results of mainstream models such as convolutional neural network,long short-term memory network,Transformer,temporal convolutional network,and generative adversarial network,and looks forward to the future development direction of this field.

关键词

表面肌电信号/深度学习/神经网络/手势识别

Key words

surface electromyography/deep learning/neural network/gesture recognition

分类

计算机与自动化

引用本文复制引用

陈怡宁,于益芝..基于深度学习的表面肌电手势识别研究进展[J].软件导刊,2025,24(5):8-15,8.

基金项目

国家自然科学基金项目(82472826) (82472826)

软件导刊

1672-7800

访问量0
|
下载量0
段落导航相关论文