| 注册
首页|期刊导航|热力发电|面向深度调峰和智能发电的炉膛温度场在线监测及预测综述

面向深度调峰和智能发电的炉膛温度场在线监测及预测综述

方顺利 梅晟东 刘凯 陈新建 娄春 邹莹 晋中华 杨云 李翔 任世鹏 马帅 姚斌 王浩帆 张中晖

热力发电2025,Vol.54Issue(4):13-23,11.
热力发电2025,Vol.54Issue(4):13-23,11.DOI:10.19666/j.rlfd.202408174

面向深度调峰和智能发电的炉膛温度场在线监测及预测综述

Review of furnace temperature field online monitoring and prediction for deep peaking and smart power generation

方顺利 1梅晟东 2刘凯 2陈新建 2娄春 3邹莹 4晋中华 1杨云 4李翔 5任世鹏 3马帅 3姚斌 3王浩帆 1张中晖1

作者信息

  • 1. 西安热工研究院有限公司,陕西 西安 710054
  • 2. 武汉立为工程技术有限公司,湖北 武汉 430223
  • 3. 华中科技大学煤燃烧与低碳利用全国重点实验室,湖北 武汉 430074
  • 4. 西安交通大学,陕西 西安 710049
  • 5. 兰州铝业有限公司,甘肃 兰州 730070
  • 折叠

摘要

Abstract

When thermal power units participate in deep peak loading,real-time acquisition of furnace temperature field is helpful to power plant boiler control and research of combustion process in the furnace.With the promotion of intelligent power generation,machine learning provides an important means for real-time acquisition of furnace temperature field.The principle and application of the three most commonly used online monitoring technologies of furnace temperature field,namely acoustic method,absorption spectral tomography and thermal radiation imaging,are summarized at first,and the advantages and disadvantages in the application of boiler furnace temperature measurement are reviewed.Then,the principle of the coupled machine learning and CFD prediction method is described in detail,indicating that the method is less affected in the harsh furnace environment,and the application research of the method in the combustion flame structure and parameters and the furnace temperature field is reviewed,demonstrating the feasibility of applying the method to the furnace temperature field,indicating it can accurately predict the furnace temperature field.Finally,the future development trend of furnace temperature field online monitoring technology and coupled machine learning and CFD prediction method is analyzed,so as to provide ideas for obtaining more accurate furnace temperature field in real time under the continuous advancement of intelligent construction of power station.

关键词

电站锅炉/炉膛温度场/在线监测/机器学习/预测

Key words

utility boiler/furnace temperature field/online monitoring/machine learning/prediction

引用本文复制引用

方顺利,梅晟东,刘凯,陈新建,娄春,邹莹,晋中华,杨云,李翔,任世鹏,马帅,姚斌,王浩帆,张中晖..面向深度调峰和智能发电的炉膛温度场在线监测及预测综述[J].热力发电,2025,54(4):13-23,11.

基金项目

国家重点研发计划项目(2022YFB4100703) National Key Research and Development Program(2022YFB4100703) (2022YFB4100703)

热力发电

OA北大核心

1002-3364

访问量0
|
下载量0
段落导航相关论文