| 注册
首页|期刊导航|山东电力技术|电力钢绞线多尺度损伤图像检测方法

电力钢绞线多尺度损伤图像检测方法

陈宇 缪进荣 杨辰飙 颜钰霆 贺润平

山东电力技术2025,Vol.52Issue(5):18-29,12.
山东电力技术2025,Vol.52Issue(5):18-29,12.DOI:10.20097/j.cnki.issn1007-9904.2025.05.003

电力钢绞线多尺度损伤图像检测方法

Multi-scale Damage Detection Method for Power Steel Strand Image

陈宇 1缪进荣 1杨辰飙 1颜钰霆 1贺润平2

作者信息

  • 1. 国网上海松江供电公司,上海 201699
  • 2. 上海四量电子科技有限公司,上海 201611
  • 折叠

摘要

Abstract

To address the challenges in detecting steel strand damage in high-voltage overhead lines,an enhanced YOLOv7 model for detecting steel strand damage is proposed.Given the issue of small-scale damage during the detection process,a Coordinate Attention module is employed to enhance the network's ability to extract information from small-scale targets.Based on the pyramid feature fusion architecture of the path aggregation feature pyramid network(PaFPN),an adaptively spatial feature fusion(ASFF)module is added to enhance the ability of the module to handle images of different sizes and various damage scales.Additionally,a weighted intersection over union is used to replace the complete intersection over union in optimizing the loss function,and a dynamic focusing mechanism is applied to bounding box regression to enhance the module's robustness.Experimental results demonstrate a significant improvement in the performance of the modified YOLOv7 module compared to the original YOLOv7 module in detecting steel strand damage,with a 15.8%increase in mean average precision.The proposed model outperforms the original model in the effectiveness of detecting steel strand damage.

关键词

目标检测/钢绞线/多尺度损伤/YOLOv7/注意力机制/损失函数/自适应机制

Key words

object detection/steel strand/multi-scale damage/YOLOv7/attention mechanism/loss function/adaptive mechanism

分类

计算机与自动化

引用本文复制引用

陈宇,缪进荣,杨辰飙,颜钰霆,贺润平..电力钢绞线多尺度损伤图像检测方法[J].山东电力技术,2025,52(5):18-29,12.

基金项目

国家电网有限公司科技项目(520935220004).Science and Technology Project of State Grid Corporation of China(520935220004). (520935220004)

山东电力技术

1007-9904

访问量0
|
下载量0
段落导航相关论文