| 注册
首页|期刊导航|综合智慧能源|基于粒子群算法的新能源消纳策略在电力交易市场的优化

基于粒子群算法的新能源消纳策略在电力交易市场的优化

张忠明 易炳星 赵海岭 赵晓晔 李长峰 孙江 赵麒贺

综合智慧能源2025,Vol.47Issue(5):84-90,7.
综合智慧能源2025,Vol.47Issue(5):84-90,7.DOI:10.3969/j.issn.2097-0706.2025.05.009

基于粒子群算法的新能源消纳策略在电力交易市场的优化

Optimization of renewable energy consumption strategies in electricity trading market based on particle swarm optimization algorithm

张忠明 1易炳星 1赵海岭 1赵晓晔 1李长峰 1孙江 2赵麒贺3

作者信息

  • 1. 新疆电力交易中心有限公司,乌鲁木齐 830063
  • 2. 青岛方天科技股份有限公司,山东 青岛 266000
  • 3. 山东科技大学 储能技术学院,山东 青岛 266590
  • 折叠

摘要

Abstract

In the context of the electricity trading market,optimizing renewable energy consumption strategies is an important approach for improving the efficiency of renewable energy utilization.The integrated scheduling of photovoltaic(PV)and thermal power generation was taken as the research subject.An electricity trading system model was established,and the scheduling strategy was optimized using the particle swarm optimization(PSO)algorithm.Through simulation of PV power generation data and electrical load datasets,the objective functions and constraints were set,and the practical effects of the optimized strategy were analyzed.The results showed that reasonable coordinated scheduling of PV and thermal power generation not only significantly improved consumption efficiency of renewable energy generation but also enhanced the stability and economic efficiency of the power system.The effectiveness of the PSO algorithm in optimizing renewable energy consumption strategies was validated.It provides a theoretical basis and practical guidance for electricity market reform and renewable energy utilization.

关键词

粒子群优化算法/新能源消纳/电力市场/交易策略/现货交易

Key words

particle swarm optimization algorithm/renewable energy consumption/electricity market/trading strategy/spot trading

分类

能源科技

引用本文复制引用

张忠明,易炳星,赵海岭,赵晓晔,李长峰,孙江,赵麒贺..基于粒子群算法的新能源消纳策略在电力交易市场的优化[J].综合智慧能源,2025,47(5):84-90,7.

综合智慧能源

2097-0706

访问量1
|
下载量0
段落导航相关论文