| 注册
首页|期刊导航|山西大学学报(自然科学版)|基于注意力的多特征融合加密流量识别方法

基于注意力的多特征融合加密流量识别方法

孙文茜 翟江涛 刘光杰 许成程

山西大学学报(自然科学版)2025,Vol.48Issue(3):481-491,11.
山西大学学报(自然科学版)2025,Vol.48Issue(3):481-491,11.DOI:10.13451/j.sxu.ns.2023116

基于注意力的多特征融合加密流量识别方法

Attention-based Multi Feature Fusion Encrypted Traffic Recognition Method

孙文茜 1翟江涛 1刘光杰 1许成程1

作者信息

  • 1. 南京信息工程大学 电子与信息工程学院,江苏 南京 210044
  • 折叠

摘要

Abstract

To address the issue of insufficient feature information extraction caused by neural network architecture in current encrypt-ed traffic recognition research,this paper proposes a multi-feature fusion encrypted traffic recognition method based on attention mechanism.The proposed method focuses on the hierarchical structure characteristics of encrypted traffic and designs two parallel network branches for feature extraction.Branch one uses residual neural network(ResNet)to extract the original features of traffic,while branch two uses an Inception-CNN composed of irregular-sized convolution kernels to extract statistical features of traffic for characterization and compensate for the information loss caused by traffic cropping.In addition,this paper converts the statistical features from the existing grayscale image to the RGBA image format as input to help the model more effectively extract features.The features extracted by the two branches are merged into a new feature vector and input into the channel attention module for weighting to enhance the representation ability of traffic features.The experimental results show that the proposed model performs better than existing typical encrypted traffic classification methods,with significantly improved accuracy,recall rate,and F1-score,among which the comprehensive performance metric F1-score is increased by an average of 6%compared to existing methods.

关键词

加密流量/残差神经网络/特征融合/流量识别

Key words

encrypted traffic/residual neural network/feature fusion/traffic identification

分类

计算机与自动化

引用本文复制引用

孙文茜,翟江涛,刘光杰,许成程..基于注意力的多特征融合加密流量识别方法[J].山西大学学报(自然科学版),2025,48(3):481-491,11.

基金项目

国家自然科学基金(61931004 ()

62072250) ()

国家重点研发计划(2021QY0700) (2021QY0700)

山西大学学报(自然科学版)

OA北大核心

0253-2395

访问量0
|
下载量0
段落导航相关论文