| 注册
首页|期刊导航|石油物探|基于多尺度特征融合的生成对抗网络地震数据重建算法

基于多尺度特征融合的生成对抗网络地震数据重建算法

李跃 罗倩 段中钰

石油物探2025,Vol.64Issue(3):482-493,12.
石油物探2025,Vol.64Issue(3):482-493,12.DOI:10.12431/issn.1000-1441.2024.0128

基于多尺度特征融合的生成对抗网络地震数据重建算法

Seismic data reconstruction based on MSF-GAN

李跃 1罗倩 2段中钰1

作者信息

  • 1. 北京信息科技大学信息与通信工程学院,北京 102206||北京信息科技大学信息与通信系统信息产业部重点实验室,北京 102206
  • 2. 北京信息科技大学信息与通信工程学院,北京 102206
  • 折叠

摘要

Abstract

To address the problems of spatial discontinuity,blurred edges,and loss of structural details in seismic data reconstruction,a new algorithm is proposed based on multi-scale feature fusion and generative adversarial network(MSF-GAN).The algorithm designs a multi-scale feature fusion generator in the GAN for effective seismic feature extraction and multi-scale fusion.A feature splicing module is designed in the generator for adaptively adding masks to seismic data,so as to splice the reconstructed data and the original intact data and improve computational efficiency.A multi-dimensional adversarial discriminator is designed in the GAN to improve reconstruction accuracy.Furthermore,a hybrid loss function integrating Smooth L1 reconstruction loss and adversarial loss is proposed to update the generator and improve reconstruction reliability.Public data and seismic data from Daqing oilfield are reconstructed to validate the algorithm in different scenarios:continuous data loss,random data loss,and regular data loss.MSF-GAN performs better than orthogonal matching pursuit,projection onto convex sets,and spectrally normalized generative adversarial network in structural details and spatial continuity.

关键词

地震数据重建/生成对抗网络/多尺度特征融合/特征拼接/深度学习

Key words

seismic data reconstruction/generator adversarial network/multi-scale feature fusion/feature splicing/deep learning

分类

石油、天然气工程

引用本文复制引用

李跃,罗倩,段中钰..基于多尺度特征融合的生成对抗网络地震数据重建算法[J].石油物探,2025,64(3):482-493,12.

基金项目

山西省科技重大专项项目"煤层气储层三维精细地质建模方法及软件研发"(20201101004)资助.This research is financially supported by the Major Science and Technology Project of Shanxi Province(Grant No.20201101004). (20201101004)

石油物探

OA北大核心

1000-1441

访问量0
|
下载量0
段落导航相关论文