| 注册
首页|期刊导航|统计与决策|(1,1)-阶GARCH类模型的非负性、平稳性及记忆性研究

(1,1)-阶GARCH类模型的非负性、平稳性及记忆性研究

潘群星 杜修立 张兵

统计与决策2025,Vol.41Issue(9):66-71,6.
统计与决策2025,Vol.41Issue(9):66-71,6.DOI:10.13546/j.cnki.tjyjc.2025.09.011

(1,1)-阶GARCH类模型的非负性、平稳性及记忆性研究

Study on Non-negativity,Stationarity and Memorability of(1,1)-Order GARCH-class Models

潘群星 1杜修立 1张兵2

作者信息

  • 1. 南京财经大学 金融学院,南京 210023
  • 2. 南京大学 商学院,南京 210093
  • 折叠

摘要

Abstract

This paper employs the Maclaurin series to expand the(1,1)-order GARCH-class models into ARCH(∞)process,then uses their impulse response functions and the Volterra series to examine the issues of non-negativity(model specification),covariance stationarity and memorability.The results are shown as follows:Both the IGARCH and EWMA models are short-term memory rather than permanent memory processes;the memory of FIGARCH model is still open.None of the three models can achieve stationarity.The stationary LMGARCH model is a long memory process,while the stationary HYGARCH model is an in-termediate memory process.There are non-negativity constraints on the specifications of all the above models.

关键词

(1,1)-阶GARCH类模型/ARCH(∞)过程/脉冲响应函数/Volterra级数

Key words

(1,1)-order GARCH-class models/ARCH(∞)process/impulse response function/Volterra series

分类

管理科学

引用本文复制引用

潘群星,杜修立,张兵..(1,1)-阶GARCH类模型的非负性、平稳性及记忆性研究[J].统计与决策,2025,41(9):66-71,6.

基金项目

国家社会科学基金资助项目(20BJY250) (20BJY250)

统计与决策

OA北大核心

1002-6487

访问量0
|
下载量0
段落导航相关论文