| 注册
首页|期刊导航|西安电子科技大学学报(自然科学版)|基于深度学习的人脸动画驱动方法综述

基于深度学习的人脸动画驱动方法综述

刘龙 李浩生 张梦璇 杜莹 常雅淇 张文博

西安电子科技大学学报(自然科学版)2025,Vol.52Issue(2):57-84,28.
西安电子科技大学学报(自然科学版)2025,Vol.52Issue(2):57-84,28.DOI:10.19665/j.issn1001-2400.20240907

基于深度学习的人脸动画驱动方法综述

Review of deep learning-based methods for driving facial animation

刘龙 1李浩生 1张梦璇 2杜莹 3常雅淇 1张文博1

作者信息

  • 1. 西安电子科技大学电子工程学院,陕西西安 710071
  • 2. 西安电子科技大学人工智能学院,陕西西安 710071
  • 3. 北京电影学院,北京 100088
  • 折叠

摘要

Abstract

Facial animation technology aims to dynamically drive static facial images using source data such as audio or video to produce realistic animation effects.The development of deep learning technology has greatly promoted the progress of facial animation technology.This deep learning technology can learn and capture facial features and movement patterns,achieving realistic and personalized facial animation through an automated driving process.Currently,there are numerous research achievements in the field of facial animation based on deep learning.However,existing reviews focus mostly on specific technologies or single-modality driving sources.This paper systematically reviews the facial animation driving technology based on deep learning,summarizing the research status according to the process of audio and video driving facial animation.First,it introduces the common process of extracting facial features from input source data.Second,it deeply analyzes the key technologies of feature extraction and animate generation,and compares the advantages and disadvantages of different deep learning network architectures in each step.Finally,it summarizes the animation generation methods under different architectures and compares their similarities and differences.In addition,this paper also lists the commonly used datasets and evaluation metrics for facial animation,summarizes the existing challenges in the field,further elaborates on the development trends of future work,and makes some prospects,aiming to provide researchers with a more comprehensive perspective on the application of deep learning in the field of facial animation.

关键词

人脸动画/深度学习/音视频驱动/虚拟人/研究综述

Key words

facial animation/deep learning/audio-driven and video-driven/virtual avatars/research review

引用本文复制引用

刘龙,李浩生,张梦璇,杜莹,常雅淇,张文博..基于深度学习的人脸动画驱动方法综述[J].西安电子科技大学学报(自然科学版),2025,52(2):57-84,28.

基金项目

陕西省技术创新引导计划(2023KXJ-279) (2023KXJ-279)

西安电子科技大学学报(自然科学版)

OA北大核心

1001-2400

访问量0
|
下载量0
段落导航相关论文