| 注册
首页|期刊导航|西安电子科技大学学报(自然科学版)|梯度递归模型优化注入系数的全色锐化算法

梯度递归模型优化注入系数的全色锐化算法

戴欢 杨勇 卢航远 黄淑英 陈常杰

西安电子科技大学学报(自然科学版)2025,Vol.52Issue(2):143-155,13.
西安电子科技大学学报(自然科学版)2025,Vol.52Issue(2):143-155,13.DOI:10.19665/j.issn1001-2400.20241103

梯度递归模型优化注入系数的全色锐化算法

Gradient recursive optimization based injection coefficient algorithm for pansharpening

戴欢 1杨勇 2卢航远 3黄淑英 4陈常杰5

作者信息

  • 1. 江西财经大学计算机与人工智能学院,江西南昌 330032||江西省科技基础条件平台中心,江西 南昌 330003
  • 2. 天津工业大学计算机科学与技术学院,天津 300387
  • 3. 金华职业技术学院 信息工程学院,浙江 金华 321007
  • 4. 天津工业大学软件学院,天津 300387
  • 5. 江西财经大学计算机与人工智能学院,江西南昌 330032
  • 折叠

摘要

Abstract

Pansharpening is to fuse the panchromatic(PAN)and multispectral(MS)images to produce High-Resolution Multispectral(HRMS)images,which is helpful for applications in ground object identification and land monitoring in the field of remote sensing.However,existing pansharpening methods based on multi-resolution analysis often overlook the relationship between the image gradients,leading to inaccuracies in extracting the detailed features from the source image and causing spatial distortion in the fusion results.To address these issues,this paper proposes a novel pansharpening method based on gradient recursion to optimize the injection coefficient.This method first analyzes the gradient relationship between the source and the fusion image.It constructs a recursive model between the ideal HRMS image and the source images at full-scale.Then,a gradient regression algorithm is designed to solve the injection coefficients iteratively.Finally,the injection coefficients are employed to refine the details obtained through a multi-resolution analysis,and the optimized details are injected into the MS image to generate the optimal HRMS image.The method is tested through simulation and real experiments on three datasets,including Pléiades,IKONOS,and WorldView-3.Compared to the second-best performing method,the ERGAS values increase by 3.59%,4.46%,and 2.18%in the simulation experimental results,respectively,and the QNR values also increase by 3.83%and 1.92%in real experiments on the Pléiades and IKONOS datasets.However,the QNR value achieves a second-best performance on the WorldView-3 dataset.In ablation experiments,compared to a gradient-free pansharpening method,the ERGAS values increase by 11.33%,14.08%,and 1.95%respectively.The HRMS images generated by our method effectively integrate the spectral information from MS images with the spatial information from PAN images,thereby significantly enhancing HRMS's spectral and spatial resolution,with the computational efficiency relatively fast.

关键词

遥感/图像融合/全色锐化/注入系数/梯度/递归/迭代优化

Key words

remote sensing/image fusion/pansharpening/injection coefficient/gradient/recursion/iterative optimization

分类

信息技术与安全科学

引用本文复制引用

戴欢,杨勇,卢航远,黄淑英,陈常杰..梯度递归模型优化注入系数的全色锐化算法[J].西安电子科技大学学报(自然科学版),2025,52(2):143-155,13.

基金项目

国家自然科学基金(62072218,62261025,62362035) (62072218,62261025,62362035)

天津市自然科学基金项目(24JCDJC00130) (24JCDJC00130)

江西省自然科学基金管理科学项目(20213BAA10W03) (20213BAA10W03)

江西省重点研发计划重点项目(20243BBG71032,20243BBG71036) (20243BBG71032,20243BBG71036)

西安电子科技大学学报(自然科学版)

OA北大核心

1001-2400

访问量0
|
下载量0
段落导航相关论文