| 注册
首页|期刊导航|西安电子科技大学学报(自然科学版)|面向高分辨率图像传输的CNN网络编码方案研究

面向高分辨率图像传输的CNN网络编码方案研究

刘娜 杨颜博 张嘉伟 李宝山 马建峰

西安电子科技大学学报(自然科学版)2025,Vol.52Issue(2):225-238,14.
西安电子科技大学学报(自然科学版)2025,Vol.52Issue(2):225-238,14.DOI:10.19665/j.issn1001-2400.20241206

面向高分辨率图像传输的CNN网络编码方案研究

Research on the CNN network coding scheme for high-resolution image transmission

刘娜 1杨颜博 1张嘉伟 2李宝山 1马建峰2

作者信息

  • 1. 内蒙古科技大学数智产业学院,内蒙古自治区 包头 014010
  • 2. 西安电子科技大学网络与信息安全学院,陕西西安 710071
  • 折叠

摘要

Abstract

Network coding technology can effectively improve the network throughput.However,traditional network coding involves a high complexity in both encoding and decoding and it is difficult to adapt to the influence of dynamic factors such as environmental noise,which leads easily to decoding distortion.In recent years,researchers have introduced neural networks to optimize the network coding process,but in high-resolution image transmission,the existing neural network coding schemes have an insufficient ability to capture high-dimensional spatial information,resulting in large communication and computation overhead.To solve this problem,this paper proposes a joint source deep learning Network coding scheme that uses a two-dimensional Convolutional Neural Network(CNN)to parameter-design the encoder and decoder of each network node,which captures deep spatial structure information and reduces the computational complexity of network nodes.At the source node,the convolution layer operation is used to reduce the dimension of the transmission data and improve the data transmission rate;At the intermediate node,the data from the two sources are received and compressed by CNN coding for single channel transmission;At the destination node,the received data is decoded using a CNN to increase the dimension and restore the original image.Experimental results show that under different channel bandwidth occupancy ratios and channel noise levels,the proposed scheme shows an excellent decoding performance in peak signal-to-noise ratio and structural similarity.

关键词

网络编码/深度学习/卷积神经网络/高分辨率图像/图像通信

Key words

network coding/deep learning/convolutional neural networks/high resolution image/image communication

分类

信息技术与安全科学

引用本文复制引用

刘娜,杨颜博,张嘉伟,李宝山,马建峰..面向高分辨率图像传输的CNN网络编码方案研究[J].西安电子科技大学学报(自然科学版),2025,52(2):225-238,14.

基金项目

内蒙古自治区自然科学基金委联合项目(2024LHS06005) (2024LHS06005)

西安电子科技大学学报(自然科学版)

OA北大核心

1001-2400

访问量0
|
下载量0
段落导航相关论文