基于目标检测的动物识别研究OA
Research on Animal Recognition Based on Target Detection
动物识别对于生态保护、农业管理以及智能监控等领域具有重要的意义和作用.然而,人工辨识动物往往依赖于个体的经验和知识,存在主观性强、效率低下和难以大规模应用等问题.为了解决这一挑战,文章重点研究了一种基于深度学习的RGB图像识别方法.基于YOLOv7,引入K-means聚类算法优化目标候选框.实验结果表明,与YOLOv3、YOLOv5、YOLOv7 和YOLOv10 相比,所提模型在所有评估指标上性能最佳,精度为 73.80%,mAP@0.5 为74.60%,mAP@0.5:0.95 为 66.60%;与基线方法YOLOv7 相比,在精度(P)、召回率(R)、mAP@0.5 和mAP@0.5:0.95上分别提高了0.50%、3.40%、1.30%和2.00%.综上所述,该研究实现了对多种野生动物及家养动物的高效、准确识别,为生态保护、农业管理以及智能监控等领域提供了强有力的技术支持.
Animal recognition is of great significance and role in the fields of ecological protection,agricultural management and intelligent monitoring.However,the manual recognition of animals often depends on the individual's experience and knowledge,which is subjective,inefficient and difficult to apply on a large scale.In order to solve this challenge,this paper focuses on an RGB image recognition method based on Deep Learning.Based on YOLOv7,K-means clustering algorithm is introduced to optimize the target candidate box.The experimental results show that compared with YOLOv3,YOLOv5,YOLOv7 and YOLOv10,the proposed model has the best performance in all evaluation indicators,with an accuracy of 73.80%,mAP@0.5 of 74.60%,and mAP@0.5:0.95 of 66.60%.Compared with the baseline method YOLOv7,the Precision(P),Recall(R),mAP@0.5 and mAP@0.5:0.95 are increased by 0.50%,3.40%,1.30%and 2.00%,respectively.In summary,this study achieves efficient and accurate identification of a variety of wild animals and domestic animals,and provides strong technical support for ecological protection,agricultural management,and intelligent monitoring.
蒙素素;康家荣;杨秀增
广西民族师范学院,广西 崇左 532200广西民族师范学院,广西 崇左 532200广西民族师范学院,广西 崇左 532200
计算机与自动化
野生动物识别目标检测注意力机制
wild animal recognitionTarget DetectionAttention Mechanism
《现代信息科技》 2025 (10)
58-63,6
广西民族师范学院项目(2022FW073)
评论