| 注册
首页|期刊导航|中国机械工程|基于变分模态滤波和注意力机制的重载机器人铣削系统颤振辨识方法

基于变分模态滤波和注意力机制的重载机器人铣削系统颤振辨识方法

梁志强 刘志兵 陈司晨 杜宇超 刘宝隆 高子瑞 乐毅 肖玉斌 郑浩然 仇天阳

中国机械工程2025,Vol.36Issue(5):1018-1027,1073,11.
中国机械工程2025,Vol.36Issue(5):1018-1027,1073,11.DOI:10.3969/j.issn.1004-132X.2025.05.013

基于变分模态滤波和注意力机制的重载机器人铣削系统颤振辨识方法

Chatter Identification Method for Heavy-duty Robotic Milling Systems Based on Variational Mode Filtering and Attention Mechanism

梁志强 1刘志兵 2陈司晨 2杜宇超 2刘宝隆 1高子瑞 2乐毅 3肖玉斌 4郑浩然 2仇天阳2

作者信息

  • 1. 北京理工大学机械与车辆学院,北京,100081||北京理工大学(珠海)能源交通学域,珠海,519088
  • 2. 北京理工大学机械与车辆学院,北京,100081
  • 3. 中国空间技术研究院北京卫星制造厂有限公司,北京,100094
  • 4. 江麓机电集团有限公司,湘潭,411100
  • 折叠

摘要

Abstract

A method was proposed for identifying chatters in heavy-duty robotic milling systems by integrating variational mode filtering with fixed parameters,envelope filtering and an attention mechanism network identification.Initially,variational mode filtering theory was applied to eliminate non-chatter signal components in the high-frequency ranges by optimally selecting a quadratic penalty.Then,to swiftly identify the current machining conditions,the envelope filtering method was em-ployed,leveraging signal time domain distribution and the frequency domain mapping law to remove the spindle speed-related signal components in the low-frequency ranges.Subsequently,a network identification model incorporating an attention mechanism was developed to identify preprocessed multi-temporal short-term signal segments for machining condition identification,followed by verifi-cation experiments on heavy-duty robotic milling systems.Experimental analysis results demonstrate that by eliminating non-chatter signals in the high-frequency ranges and spindle speed-related compo-nents in the low-frequency ranges,the accuracy of regenerative chatter identification is significantly enhanced,achieving an identification accuracy of 98.75%.Compared with alternative identification methods,the proposed method may effectively identify regenerative chatters during heavy-duty robot-ic milling processes,thus offering valuable technical support for future online chatter suppression of heavy-duty robotic milling.

关键词

机器人铣削/颤振辨识/变分模态滤波/注意力机制

Key words

robotic milling/chatter identification/variational mode filtering/attention mecha-nism

分类

信息技术与安全科学

引用本文复制引用

梁志强,刘志兵,陈司晨,杜宇超,刘宝隆,高子瑞,乐毅,肖玉斌,郑浩然,仇天阳..基于变分模态滤波和注意力机制的重载机器人铣削系统颤振辨识方法[J].中国机械工程,2025,36(5):1018-1027,1073,11.

基金项目

国家自然科学基金(52375400) (52375400)

转化应用项目(2B0188E1,D44F9A65) (2B0188E1,D44F9A65)

中国机械工程

OA北大核心

1004-132X

访问量0
|
下载量0
段落导航相关论文