首页|期刊导航|中国药物评价|基于随机森林算法的溶出方法中溶出介质pH预测模型研究

基于随机森林算法的溶出方法中溶出介质pH预测模型研究OA

Research on the Prediction Model of Dissolution Medium pH in the Dissolution Method Based on Random Forest Algorithm

中文摘要英文摘要

药品的溶出测试在研发过程中发挥着重要的作用,对溶出方法中的参数进行预测,可帮助提高药品溶出方法的开发效率.本研究通过随机森林机器学习算法,基于1 331条数据集,使用网格搜索技术对超参数进行调优,构建溶出方法中溶出介质pH预测模型.构建的随机森林分类预测模型的AUC分别为0.85(Class 1)、0.90(Class 2)、0.86(Class 3)、0.87(Class 4),准确率为0.76.通过优化后的随机森林算法构建的溶出方法中溶出介质pH预测模型,可为药品溶出方法的开发提供参考,提升开发效率.

The dissolution test plays an important role in the drug research and development,and the prediction of parameters in the dissolution method can help improve the efficiency of the development of dissolution method.In this study,a random forest machine learn-ing algorithm was used to construct a prediction model of the dissolution medium pH in the dissolution method based on 1331 datasets.The hyperparameters were tuned using grid search techniques.The AUC of the optimized random forest classification prediction model was 0.85(Class 1),0.90(Class 2),0.86(Class 3),and 0.87(Class 4),respectively,and the accuracy was 0.76.The pH prediction model of the dissolution medium for the dissolution method constructed by the optimized random forest algorithm can provide a reference for the development of drug dissolution methods and improve the development efficiency.

曹文军;李佐静

沈阳药科大学,辽宁沈阳 117004||美药典标准研发技术服务(上海)有限公司,上海 200137沈阳药科大学,辽宁沈阳 117004

药学

机器学习随机森林溶出方法网格搜索

Machine learningRandom forestDissolution methodsGrid search

《中国药物评价》 2025 (2)

91-94,4

评论