| 注册
首页|期刊导航|浙江电力|基于深度强化学习的多能流建筑综合能源系统优化调度

基于深度强化学习的多能流建筑综合能源系统优化调度

夏旭华 杨建迪 施永涛

浙江电力2025,Vol.44Issue(5):101-111,11.
浙江电力2025,Vol.44Issue(5):101-111,11.DOI:10.19585/j.zjdl.202505010

基于深度强化学习的多能流建筑综合能源系统优化调度

Optimal scheduling of BIES with multi-energy flow coupling based on deep RL

夏旭华 1杨建迪 2施永涛2

作者信息

  • 1. 国网浙江杭州市富阳区供电有限公司,杭州 311400
  • 2. 杭州电子科技大学 自动化学院,杭州 310018
  • 折叠

摘要

Abstract

Building integrated energy systems(BIESs)can enhance energy efficiency ratio(EER)and reduce car-bon emissions while meeting diverse user-side load demands.To further improve the energy dispatch capability of BIES,this paper proposes a low-carbon economic and optimal dispatch method for BIES with multi-energy flow cou-pling based on deep reinforcement learning(deep RL).Firstly,a mathematical model of a photovoltaic-storage inte-grated BIES with multi-energy flow coupling is established to fully characterize energy interaction and coupling char-acteristics.Secondly,the state space,action space,and reward function for the operational dispatch strategy are de-signed using deep RL,and a low-carbon economic and optimal dispatch framework is constructed using the soft actor-critic(SAC)algorithm.Finally,the proposed method is validated in typical daily load scenarios in summer and winter.Results demonstrate that,compared to similar methods,the proposed method achieves faster conver-gence,more stable optimization effects,and effectively reduces both daily energy costs and carbon emission costs in IES operations.

关键词

深度强化学习/综合能源系统/调度优化/碳排放

Key words

deep RL/IES/scheduling optimization/carbon emission

引用本文复制引用

夏旭华,杨建迪,施永涛..基于深度强化学习的多能流建筑综合能源系统优化调度[J].浙江电力,2025,44(5):101-111,11.

基金项目

浙江省重点研发计划项目(2024C01018) (2024C01018)

浙江电力

1007-1881

访问量0
|
下载量0
段落导航相关论文