| 注册
首页|期刊导航|郑州大学学报(理学版)|基于RNN的标准单元延时预测方法

基于RNN的标准单元延时预测方法

游卉擎 黄鹏程 赵振宇 王斌 向凌云

郑州大学学报(理学版)2025,Vol.57Issue(3):28-34,7.
郑州大学学报(理学版)2025,Vol.57Issue(3):28-34,7.DOI:10.13705/j.issn.1671-6841.2023213

基于RNN的标准单元延时预测方法

A Standard Cell Delay Prediction Method Based on RNN

游卉擎 1黄鹏程 2赵振宇 2王斌 2向凌云3

作者信息

  • 1. 国防科技大学计算机学院 湖南长沙 410073||国防科技大学先进微处理器芯片与系统重点实验室 湖南长沙 410073||长沙理工大学计算机与通信工程学院 湖南长沙 410114
  • 2. 国防科技大学计算机学院 湖南长沙 410073||国防科技大学先进微处理器芯片与系统重点实验室 湖南长沙 410073
  • 3. 长沙理工大学计算机与通信工程学院 湖南长沙 410114
  • 折叠

摘要

Abstract

During the iterative optimization timing process from the post-routing to the sign-off stage,a sig-nificant time-cost issue was incurred due to the repetitive execution of static timing analysis.Therefore,a standard cell feature extraction algorithm was devised and the standard cell delay prediction problem was modeled.Utilizing the recurrent neural network(RNN)as the foundation,the cell-delay prediction model(C-DPM)was constructed to delve into the nonlinear mapping relationship between standard cell character-istics and delay,facilitating rapid prediction of standard cell delay.To assess the delay prediction perform-ance of C-DPM for different design modules under various process,voltage,and temperature conditions,experiments were conducted on six different design modules with sub-30 nm process.The experimental re-sults revealed that the maximum average absolute error in delay prediction for C-DPM ranged from 0.519 ps to 1.310 ps,while the minimum average absolute error in delay prediction ranged from 0.380 ps to 1.016 ps.This demonstrated that C-DPM could trade off minimal error for a reduction in time overhead,thereby accelerating the efficiency of physical design.

关键词

循环神经网络/静态时序分析/机器学习/标准单元/延时预测

Key words

recurrent neural network/static timing analysis/machine learning/standard cell/delay prediction

分类

计算机与自动化

引用本文复制引用

游卉擎,黄鹏程,赵振宇,王斌,向凌云..基于RNN的标准单元延时预测方法[J].郑州大学学报(理学版),2025,57(3):28-34,7.

基金项目

国家自然科学基金项目(62034005) (62034005)

湖南省科技创新计划资助项目(2023RC3014) (2023RC3014)

湖南省自然科学基金项目(2023JJ30637,2022JJ10066) (2023JJ30637,2022JJ10066)

青年科技人才支持计划(ZD0102088845) (ZD0102088845)

郑州大学学报(理学版)

OA北大核心

1671-6841

访问量0
|
下载量0
段落导航相关论文