| 注册
首页|期刊导航|郑州大学学报(理学版)|基于跨层级注意力学习的RGB-T显著目标检测

基于跨层级注意力学习的RGB-T显著目标检测

魏明军 魏帅 刘亚志 李辉

郑州大学学报(理学版)2025,Vol.57Issue(3):42-48,7.
郑州大学学报(理学版)2025,Vol.57Issue(3):42-48,7.DOI:10.13705/j.issn.1671-6841.2023163

基于跨层级注意力学习的RGB-T显著目标检测

RGB-T Salient Object Detection Based on Cross-level Attention Learning

魏明军 1魏帅 2刘亚志 1李辉2

作者信息

  • 1. 华北理工大学 人工智能学院 河北 唐山 063210||河北省工业智能感知重点实验室 河北唐山 063210
  • 2. 华北理工大学 人工智能学院 河北 唐山 063210
  • 折叠

摘要

Abstract

RGB-thermal saliency object detection(RGB-T SOD)aimed to segment common salient re-gions in both visible light images and corresponding thermal infrared images.To address the problem of insufficient utilization of cross-level complementary information among existing methods,a cross-level fea-ture attention learning network(CALNet)was proposed for the RGB-T SOD task.Specifically,the net-work included a cross-level attention learning module(CAL),which used non-local attention to interact cross-level information among multiple modalities and could fully explore global positions and local details across different modalities and levels.In addition,the network also introduced a global information mod-ule(GIM)and a multi-interaction module(MIB),both of which could model and explore multi-type in-formation in a layer-by-layer decoding process for more accurate RGB-T SOD.Extensive experiments on public RGB-T datasets demonstrated that the proposed network achieved excellent performance compared with state-of-the-art algorithms in the field.

关键词

多模态/非局部注意力/RGB-T/显著目标检测/特征融合

Key words

multimodal/non-local attention/RGB-T/salient object detection/feature fusion

分类

计算机与自动化

引用本文复制引用

魏明军,魏帅,刘亚志,李辉..基于跨层级注意力学习的RGB-T显著目标检测[J].郑州大学学报(理学版),2025,57(3):42-48,7.

基金项目

河北省高等学校科学技术研究项目(ZD2022102) (ZD2022102)

郑州大学学报(理学版)

OA北大核心

1671-6841

访问量0
|
下载量0
段落导航相关论文