| 注册
首页|期刊导航|郑州大学学报(工学版)|基于TD3算法的光伏电站参与电力系统频率控制策略

基于TD3算法的光伏电站参与电力系统频率控制策略

张建华 陶莹 赵思

郑州大学学报(工学版)2025,Vol.46Issue(3):42-49,8.
郑州大学学报(工学版)2025,Vol.46Issue(3):42-49,8.DOI:10.13705/j.issn.1671-6833.2024.06.023

基于TD3算法的光伏电站参与电力系统频率控制策略

Frequency Control Strategy of Photovoltaic Participation in Power System Based on TD3 Algorithm

张建华 1陶莹 1赵思1

作者信息

  • 1. 华北电力大学 控制与计算机工程学院,北京 102206
  • 折叠

摘要

Abstract

To address the challenges posed by the intermittency and randomness of photovoltaic(PV)power output to maintaining stable power system frequency,a rapid frequency regulation method based on the twin delayed deep deterministic policy gradient(TD3)algorithm was proposed.No need to rely on specific mechanistic models,this method could tackle the strong uncertainties associated with PV power generation.Firstly,a simplified model of the PV power generation system was constructed.Secondly,a novel frequency controller was designed leveraging the TD3 algorithm.Lastly,the proposed control strategy was compared with traditional droop control,sliding mode con-trol,and a control strategy based on the deep deterministic policy gradient(DDPG)algorithm.The results demon-strated that,in two scenarios,single-step and continuous-step load disturbances respectively,the frequency devia-tions based on the proposed control strategy were significantly lower than those of the other three control algorithms.Specifically,the integral of time-weighted absolute error(ITAE)criterion showed a reduction of 41.7%and 31.8%compared to the worst-performing droop control,thoroughly validating the superiority of the proposed control strategy in terms of both dynamic and steady-state performance during frequency regulation.

关键词

光伏并网系统/一次调频/深度强化学习/双延迟深度确定性策略梯度算法/控制性能

Key words

photovoltaic grid-connected system/primary frequency regulation/deep reinforcement learning/twin delayed deep deterministic policy gradient algorithm/control performance

分类

动力与电气工程

引用本文复制引用

张建华,陶莹,赵思..基于TD3算法的光伏电站参与电力系统频率控制策略[J].郑州大学学报(工学版),2025,46(3):42-49,8.

基金项目

国家自然科学基金资助项目(61973116) (61973116)

国家重点研发计划项目(2019YFB1505400) (2019YFB1505400)

中央高校基本科研业务费专项资金资助项目(2023JC001) (2023JC001)

郑州大学学报(工学版)

OA北大核心

1671-6833

访问量0
|
下载量0
段落导航相关论文