| 注册
首页|期刊导航|重庆理工大学学报|融合鲸鱼优化与动态时间规整的新能源汽车故障诊断方法

融合鲸鱼优化与动态时间规整的新能源汽车故障诊断方法

张丰硕 赵理 杨世超 张栋业

重庆理工大学学报2025,Vol.39Issue(7):35-41,7.
重庆理工大学学报2025,Vol.39Issue(7):35-41,7.DOI:10.3969/j.issn.1674-8425(z).2025.04.005

融合鲸鱼优化与动态时间规整的新能源汽车故障诊断方法

The whale optimization-based dynamic time warping method for fault diagnosis for new energy vehicles

张丰硕 1赵理 2杨世超 1张栋业1

作者信息

  • 1. 北京信息科技大学机电工程学院,北京 100192
  • 2. 北京信息科技大学机电工程学院,北京 100192||新能源汽车北京实验室,北京 100192
  • 折叠

摘要

Abstract

To address the low accuracy and low efficiency of the traditional fault classification for new energy vehicles,this paper proposes a new energy vehicle fault diagnosis model(WPPD)based on whale optimization-dynamic time warping.It combines principal component analysis(PCA),piecewise aggregate approximation(PAA)and dynamic time warping(DTW).Moreover,it employs the whale optimization algorithm(WOA)to optimize key parameters to achieve high-precision fault diagnosis.First,the two-step dimensionality reduction of vehicle fault data is conducted by PCA and PAA to compress the features and approximate the time series by piecewise aggregation.Then,DTW and KNN are integrated for fault classification of the processed time series.Fault identification is conducted by calculating the similarity between different time series.Finally,WOA is introduced to optimize the number of features after PCA reduction,the number of PAA segments,and the k value in DTW to improve diagnostic performance and classification accuracy.Results show compared with traditional models,the fault diagnosis model markedly improves the recall and F1 score.

关键词

故障诊断/鲸鱼优化算法/动态时间规整/主成分分析/分段聚合近似

Key words

fault diagnosis/WOA/DTW/PCA/PAA

分类

交通运输

引用本文复制引用

张丰硕,赵理,杨世超,张栋业..融合鲸鱼优化与动态时间规整的新能源汽车故障诊断方法[J].重庆理工大学学报,2025,39(7):35-41,7.

基金项目

国家自然科学基金面上项目(52077007) (52077007)

重庆理工大学学报

OA北大核心

1674-8425

访问量0
|
下载量0
段落导航相关论文