| 注册
首页|期刊导航|电讯技术|复杂环境下基于CNN-Transformer的端到端航迹关联

复杂环境下基于CNN-Transformer的端到端航迹关联

彭锐晖 贺基贤 孙殿星 杨雪婷

电讯技术2025,Vol.65Issue(5):663-673,11.
电讯技术2025,Vol.65Issue(5):663-673,11.DOI:10.20079/j.issn.1001-893x.241125004

复杂环境下基于CNN-Transformer的端到端航迹关联

End-to-End Track Association Based on CNN-Transformer in Complex Environments

彭锐晖 1贺基贤 1孙殿星 2杨雪婷1

作者信息

  • 1. 哈尔滨工程大学青岛创新发展基地,山东青岛 266000
  • 2. 哈尔滨工程大学青岛创新发展基地,山东青岛 266000||海军航空大学信息融合研究所,山东烟台 264001
  • 折叠

摘要

Abstract

To address the challenges of track association in complex flight scenarios,an end-to-end track association algorithm based on a hybrid convolutional neural network(CNN)and Transformer network model is proposed to enhance the accuracy and efficiency of track association.Firstly,the track sets reported by two radars are grouped by target and stacked into feature pairs.Then,the normalized data is fed into the CNN-Transformer model.Spatial features are extracted and global information is processed through the CNN layers and Transformer encoder layers,followed by target association prediction.Finally,the best matching target is determined based on the prediction probabilities to output the association results.The experimental results show that the proposed algorithm improves the accuracy of track association by 15%~20%compared with traditional track association algorithms,whether in the presence of interference trajectory environments or high-density trajectory environments.Moreover,its robustness and accuracy are greatly improved in multi-target scenarios.

关键词

端到端航迹关联/深度学习/卷积神经网络/Transformer

Key words

end-to-end track association/deep learning/convolutional neural network/Transformer

分类

电子信息工程

引用本文复制引用

彭锐晖,贺基贤,孙殿星,杨雪婷..复杂环境下基于CNN-Transformer的端到端航迹关联[J].电讯技术,2025,65(5):663-673,11.

基金项目

国防科技重点实验室基金项目(2023-JCJQ-LB-016) (2023-JCJQ-LB-016)

电讯技术

OA北大核心

1001-893X

访问量0
|
下载量0
段落导航相关论文