| 注册
首页|期刊导航|电力系统及其自动化学报|基于特征综合评价和模型优化的锂离子电池健康状态估计方法

基于特征综合评价和模型优化的锂离子电池健康状态估计方法

黄凯 郝润凯 郭永芳

电力系统及其自动化学报2025,Vol.37Issue(5):131-140,10.
电力系统及其自动化学报2025,Vol.37Issue(5):131-140,10.DOI:10.19635/j.cnki.csu-epsa.001599

基于特征综合评价和模型优化的锂离子电池健康状态估计方法

State-of-health Estimation Method for Lithium-ion Battery Based on Comprehensive Feature Evaluation and Model Optimization

黄凯 1郝润凯 1郭永芳2

作者信息

  • 1. 河北工业大学省部共建电工装备可靠性与智能化国家重点实验室,天津 300401||河北工业大学河北省电磁场与电器可靠性重点实验室,天津 300401
  • 2. 河北工业大学人工智能与数据科学学院,天津 300401
  • 折叠

摘要

Abstract

Aimed at problems such as the single performance of a feature evaluation index,insufficient feature captur-ing capability of prediction models and difficulty in determining the hyperparameters,a state-of-health(SOH)estima-tion method for lithium-ion battery based on comprehensive feature evaluation and model optimization is proposed in this paper.First,the comprehensive evaluation indexes for features are constructed from the perspectives of principle and statistics,and the features with higher index scores are selected as the model input.Second,by combining the con-volutional neural networks(CNN),efficient local attention(ELA)and bi-directional gated recurrent unit(BiGRU),a CNN-ELA-BiGRU prediction model is established,which enhances the model's feature capturing capability.Finally,the golden jackal optimization algorithm is used for hyperparameter optimization of the model,thus improving its predic-tion accuracy.Results of comparative experiments show that the proposed SOH estimation method has good stability and robustness.

关键词

锂离子电池/特征综合评价指标/高效局部注意力/金豺优化算法/健康状态估计

Key words

lithium-ion battery/comprehensive feature evaluation index/efficient local attention(ELA)/golden jack-al optimization algorithm/state-of-health(SOH)estimation

分类

信息技术与安全科学

引用本文复制引用

黄凯,郝润凯,郭永芳..基于特征综合评价和模型优化的锂离子电池健康状态估计方法[J].电力系统及其自动化学报,2025,37(5):131-140,10.

基金项目

中央引导地方科技发展资金项目(236Z4408G) (236Z4408G)

天津市自然科学基金资助项目(23JCYBJC00810). (23JCYBJC00810)

电力系统及其自动化学报

OA北大核心

1003-8930

访问量5
|
下载量0
段落导航相关论文