| 注册
首页|期刊导航|广东工业大学学报|置信样本选择与差异性特征增强的域适应

置信样本选择与差异性特征增强的域适应

滕少华 吴泽锋 滕璐瑶 张巍 曾莹

广东工业大学学报2025,Vol.42Issue(3):12-26,15.
广东工业大学学报2025,Vol.42Issue(3):12-26,15.DOI:10.12052/gdutxb.230188

置信样本选择与差异性特征增强的域适应

Confidence Sample Selection and Specific Feature Enhancement for Domain Adaptation

滕少华 1吴泽锋 1滕璐瑶 2张巍 1曾莹1

作者信息

  • 1. 广东工业大学 计算机学院,广东 广州 510006
  • 2. 广州番禺职业技术学院 信息工程学院,广东 广州 511483
  • 折叠

摘要

Abstract

For domain shifts,domain adaptation(DA)promotes label propagation by reducing distributional differences.In recent work,DA only enhances the discriminability of linear data by linear discriminant analysis,which ignores real-world nonlinear data.Meanwhile,these methods fail to consider the negative impact of the target low-confidence samples on the training process.Therefore,confidence sample selection and specific feature enhancement for domain adaptation(CSS-SFE)is proposed.Firstly,the framework selects target high-confidence samples through the min-max principle to reduce the impact of incorrect pseudo-label during training;Secondly,the class scatter matrix and neighbor scatter matrix are balanced to enhance the features of linear and nonlinear datasets so that the discriminability of the samples is improved;Thirdly,the framework maintains source and target specific features by learning different projection matrices,which prevents the discriminability of the samples decreasing;Fourthly,the marginal and conditional distribution alignment is further applied to reduce the domain distribution discrepancy;Finally,extensive experiments on several benchmark datasets demonstrate the superiority of CSS-SFE over state-of-the-art methods.

关键词

高置信样本选择/差异性特征增强/域适应/标签传播

Key words

confidence sample selection/specific feature enhancement/domain adaptation/label propagation

分类

计算机与自动化

引用本文复制引用

滕少华,吴泽锋,滕璐瑶,张巍,曾莹..置信样本选择与差异性特征增强的域适应[J].广东工业大学学报,2025,42(3):12-26,15.

基金项目

国家自然科学基金资助项目(61972102) (61972102)

广州市科技计划项目(2023A04J1729) (2023A04J1729)

广东工业大学学报

1007-7162

访问量0
|
下载量0
段落导航相关论文